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A B S T R A C T   

As the availability of satellite and airborne thermal infrared remote sensing (TIR-RS) data increases and their 
spatial, temporal, and spectral resolutions improve, researchers are finding diverse applications for TIR-RS 
measurements. TIR-RS is now commonly applied in regional- and continental-scale analyses, such as those 
focused on fire and surface energy balance. However, its application lags in plant physiology and ecology, for 
which a finer-scale understanding of plant canopy temperatures would be useful to elucidate plant water dy
namics, for example. In particular, while methods to disaggregate TIR-RS pixels in horizontal space have 
advanced, possible vertical stratification of plant canopy temperature and its implications for understanding the 
correspondence between TIR-RS and finer-scale, field-based thermal measurements (e.g. made with a thermal 
camera) remain unexplored. Here, we use data from a thermal camera deployed concurrently with the recent 
ECOSTRESS mission to quantify vertical temperature gradients within tree canopies and temperatures of over- 
vs. under-story plants in a Mediterranean woodland savanna. We then leverage diverse ancillary data to maxi
mize the geometric comparability of ECOSTRESS and thermal camera measurements, in order to assess the extent 
to which the two forms of thermal measurements correspond. Specifically, we ask: (1) What are the patterns of 
intra-canopy and over- vs. under-story vertical temperature in a Mediterranean woodland savanna?, and (2) How 
can vertically-resolved, but spatially-limited field-based temperature measurements be reconciled with spatially- 
extensive, but surface-only, temperature measurements of a space-borne remote sensor? We found consistent 
patterns of vertical thermal heterogeneity both within tree canopies and between ecosystem over- and under- 
stories. The daytime difference between the top and bottom thirds of blue oak canopies was, on average, 
0.48 ◦ C – and sometimes several times larger. Notably, canopy tops are cooler, likely associated with the under- 
story grass reaching daytime temperatures often exceeding over-story temperatures by 10◦ C. Given the con
sistency of the intra-canopy temperature gradients, we expected the ECOSTRESS sensor would be in better 
agreement with camera measurements of canopy tops than bulk canopies or canopy bottoms. However, within- 
canopy gradients were overwhelmed by other sources of disagreement between the measurements, in part 
associated with upscaling camera measurements across space. Overall, thermal camera and ECOSTRESS mea
surements were largely in agreement at night (pixel RMSE = 1.1◦C), but they were more divergent during times 
of low (but >0 W/m2) and high incoming solar radiation (daytime pixel RMSE = 3.5◦C).   

1. Introduction 

Plant temperature is a fundamental driver of vegetation functioning 
across scales. At a cellular level, all enzymatic reactions are 
temperature-dependent, including photosynthesis (Farquhar et al., 
1980; Farquhar and Sharkey, 1982), respiration (Atkin and Tjoelker, 

2003), and metabolism (Michaletz, 2018). Reaction rates typically have 
thermal optima (e.g. Sage and Kubien, 2007), albeit with some degree of 
thermal acclimation under changing conditions (Berry and Bjorkman, 
1980; Smith and Dukes, 2017; Wang et al., 2020). At the scale of leaves, 
temperature is a first-order control on internal leaf vapor pressure, 
thereby influencing transpiration and plant water balance (Raschke, 
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1960). Tissues are damaged at extreme temperatures, and physiological 
processes are irreparably disrupted (Taiz and Zeiger, 2002). In turn, 
thermally-dependent physiological processes scale up to influence rates 
of plant growth, mortality and recruitment, ecological interactions 
among individuals, species geographic distributions, and biosphere- 
atmosphere fluxes of carbon, water, and energy (Charney et al., 1975; 
Shukla and Mintz, 1982). 

Plant temperature is also a gauge of vegetation functioning. Brown 
and Escombe (1905) were among the first to suggest that plant tem
perature was an indicator of water relations. They described a leaf of the 
same temperature as its surroundings, “surrounded by air which is not 
fully saturated with aqueous vapor for the temperature,” and identified 
the situation as “manifestly unstable.” The temperature of the leaf would 
fall because “water-vapour [would] diffuse through stomata if these are 
in any degree open.” Stomatal closure, by limiting plants’ ability to 
offload energy via latent heat, increases temperature (all other factors 
being equal). Therefore, the diverse conditions affecting stomatal 
conductance often have a thermal signature. These include, for example, 
elevated CO2 (Gray et al., 2016), infection (Chaerle et al., 1999), and 
water deficit (Jackson et al., 1981; Scherrer et al., 2011; Lapidot et al., 
2019). 

Together, these thermal influences and indicators of vegetation dy
namics motivate strong interest in the patterns of plant temperature 
across space and time. Historically, temperature measurements of nat
ural vegetation have often been spatially and temporally isolated (e.g. 
based on contact or infrared thermometer measurements; Medina et al., 
1978; Wilson et al., 1987; Rey-Sánchez et al., 2016; Slot and Winter, 
2017), but recent advances in satellite (Gillespie et al., 1998; Malakar 
et al., 2018; Hulley and Hook, 2018) and field-based (Aubrecht et al., 
2016; Johnston et al., 2021; Still et al., 2021) thermal remote sensing 
promise to assuage the paucity of thermal data across time (in the case of 
field instruments) and space (in the case of sensors on satellites). It is 
now a priority to explore how these proliferating thermal data types may 
be compared, in the face of challenges associated with their disparate 
resolutions and geometries. In particular, field measurements can 
resolve vertical temperature patterns, while satellite measurements are 
more comprehensive across horizontal space. Acknowledging ongoing 
development of methods to disaggregate thermal remote sensing pixels 
across horizontal space (Anderson et al., 2011; Jones and Sirault, 2014; 
Cubero-Castan et al., 2015; Xue et al., 2020), we focus here on vertical 
temperature patterns. Are vertical thermal gradients present? If so, what 
implications do they have for the correspondence of satellite and field- 
based thermal measurements? 

The extent to which plant temperatures vary as a function of position 
within the canopy is especially relevant in this era of global change and 
burgeoning environmental measurement. Vertically-stratified tempera
tures are likely to be important in accounting for recent observations 
that canopy position influences plants’ drought tolerance (McGregor 
et al., 2020) and climate sensitivity (Rollinson et al., 2020), as well as in 
providing context for vertical variation of leaf traits (e.g. Ellsworth and 
Reich, 1993; Griffin et al., 2002; Kafuti et al., 2020). Development of 
robust methods for scaling leaf-level measurements to canopies, biomes, 
and ultimately across the globe requires understanding of spatial and 
temporal heterogeneity in environmental conditions within plant can
opies (Jarvis, 1995), of which vertical structure is a key component 
(Damm et al., 2020; Banerjee and Linn, 2018). Vertically-resolved en
ergy measurements would also support improved interpretation of both 
new and established integrative measurements of ecosystem function, 
including solar-induced fluorescence (Marrs et al., 2020; Maguire et al., 
2020) and eddy covariance (Baldocchi et al., 2020). 

In this research, we combine data from a laterally-looking thermal 
camera (FLIR A325sc, Johnston et al., 2021), lidar, field measurements, 
and the ECOSTRESS instrument on the International Space Station 
(Hulley and Hook, 2018; Fisher et al., 2020) to quantify vertical plant 
temperature heterogeneity and to assess its implications for comparisons 
of satellite and ground-measured plant temperature. Specifically, we 

ask: (1) what are the patterns of intra-canopy and over- vs. under-story 
vertical temperature in a Mediterranean woodland savanna?, and (2) 
How can vertically-resolved, but spatially-limited, temperature mea
surements be reconciled with spatially-extensive, but surface-only, 
temperature measurements of a space-borne remote sensor? 

We hypothesized that (H1a) the upper leaves in tree canopies would 
be warmer than the lower leaves during the day because of their greater 
exposure to incoming solar radiation, and (H1b) canopies would be 
thermally homogeneous at night. Regarding comparisons among 
ecosystem vegetation components, we hypothesized that (H1c) the low- 
lying, aerodynamically smooth grass under-story would be consistently 
warmer than tree leaves, because it is comparatively uncoupled with the 
atmosphere and was largely senescent (and therefore not transpiring) 
during the measurement periods. Regarding the implications of vertical 
temperature gradients for reconciling satellite-based and ground-based 
thermal remote sensing, we hypothesized that (H2a) ECOSTRESS tem
perature measurements would be in stronger agreement with top-of- 
canopy temperature than with bulk canopy temperature, and (H2b) 
ECOSTRESS and FLIR-based measurements would diverge the most at 
times of highest thermal heterogeneity (both vertical and horizontal). 

2. Methods 

2.1. Methods overview 

In this paper, we present two major results. First, we quantify vertical 
thermal gradients in tree canopies and between trees and understory 
grass using measurements from a FLIR thermal camera (Fig. 1, “Analysis 
#1”). The key dataset supporting this analysis comprised thermal im
ages collected by a tower-mounted FLIR thermal camera over three dry 
seasons (when oaks have leaves). We corrected the raw thermal mea
surements for target emissivity, distance between the target and the 
sensor, reflected radiation, air temperature, and the effect of the 
enclosure according to methods detailed in Aubrecht et al. (2016) and 
Johnston et al. (2021). 

Second, we leverage diverse ancillary datasets to maximize the 
geometric comparability of FLIR and ECOSTRESS measurements, and 
we assess their correspondence (Fig. 1, “Analysis #2”). Briefly, this 
entailed using a lidar-based digital surface model, a classified IKONOS 
image, and sun and sensor geometry to determine the proportion of each 
vegetation type (oak, pine, shaded grass, and sunlit grass) visible to 
ECOSTRESS in each pixel. We then use those proportions and FLIR 
thermal camera measurements of pure vegetation “end-member” tem
peratures to calculate an expected FLIR-based temperature for each 
ECOSTRESS pixel. 

These two analyses are related by our analysis of the correspondence 
between FLIR and ECOSTRESS measurements when the FLIR-based 
thermal map is formulated using top-of-canopy temperatures, vs. 
when it is formulated using bottom-of-canopy or full-canopy (bulk) 
temperatures. 

2.2. Study area 

The study area was a semi-arid woodland savanna in the foothills of 
the Sierra Nevada Mountains, approximately 60 km southwest of Sac
ramento (38.432◦N, − 120.966◦W, 177 m elevation). The climate is 
Mediterranean, with cool, wet winters and hot, dry summers. Air tem
perature ranges from just below freezing to above 40 ◦C, with an annual 
mean of 15.8 ◦C. Precipitation typically falls only November–May, and 
averages 559 mm per year. The soils are 1 m deep, silt loam to rocky silt 
loam, and underlain by fractured metamorphic rock, sedimentary rock, 
and saprolite. 

The over-story is dominated by Quercus douglasii (blue oak). There 
are approximately 290 patchily-distributed blue oak stems per ha, 
mostly 4.0–9.5 m tall (25th - 75th height percentiles) but reaching a 
maximum height of 20.8 m. Pinus sabiniana (grey pine) are interspersed, 
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with a density of about 50 trees per ha, concentrated in the northeast 
corner of the approximately 1 × 1 km study area centered on an eddy 
covariance tower. Most grey pines are relatively small (25th - 75th 
height percentile is 2.2–6.7 m), but older trees tower over the oaks, 
reaching a maximum height of 34.0 m. The under-story is a mix of 
annual C3 grass species that are active during the wet season and se
nescent in the summer, mostly Bromus, Hypochaeris, and Brachypodium. 

Crucially for this research, the trees are sufficiently sparse that a 
thermal camera mounted 18.0 m high on the eddy covariance tower can 
image tree canopies at multiple vertical heights and can see through the 
canopy to the ground. Additionally, as a long-running Ameriflux site 
(code US-Ton), the area is extensively measured and instrumented. This 
provides the data required to characterize spatially-explicit structure 
and composition, to define seasonal dynamics, and to calibrate thermal 
camera measurements to absolute temperature (Johnston et al., 2021). 

2.2.1. Study area vegetation composition 
A high-resolution, spatially-explicit vegetation classification map 

was used to define the proportion of each vegetation component – blue 
oak, grey pine, sunlit grass, and shaded grass – within 70 × 70-m 
ECOSTRESS pixels (Fig. 1). We generated this map from an IKONOS 
satellite image acquired on July 22, 2001 (note that vegetation cover 
was relatively invariant between the IKONOS acquisition and 2019; see 
Figs. S1 and S2 for details). 

First, we enhanced the spatial resolution of the multispectral IKO
NOS scene with data from the higher-resolution IKONOS panchromatic 
band using the Gram-Schmidt Pan Sharpening algorithm (Laben and 
Brower, 2000; Maurer, 2013). The Gram-Schmidt algorithm is particu
larly useful in this application of woodland savanna vegetation classi
fication because 4 m multispectral pixels would usually be comprised of 
multiple vegetation types. Briefly, the lower-resolution multispectral 
bands are used to simulate a lower-resolution panchromatic image. 
Then, using this image as the initial vector, a modified Gram-Schmidt 
vector orthogonalization method is applied to un-correlate the bands. 
The lower-resolution panchromatic band is replaced with a modification 
of the higher-resolution original (with gain and bias adjusted according 

to the orthogonalization), multispectral bands are up-sampled, and the 
inverse Gram-Schmidt transformation yields the sharpened image 
(Laben and Brower, 2000; Maurer, 2013). Here, we applied this algo
rithm using the ENVI image processing and analysis software (Exelis 
Visual Information Solutions, 2015). 

We prepared testing and training data for a classification by 
randomly selecting 1000 points on the sharpened image to hand-classify 
into grass, oak, pine, and shadow; we also added approximately 50 extra 
shadow points and 50 extra pine points to increase sample sizes for those 
less-prevalent components (see Table S1 for spectral characteristics of 
the training data). We partitioned the final 1097 hand-classified points 
into a training set (70% of the points, ngrass = 340; noak = 212; npine =

125; nshadow = 91) and a test set (30% of the points, ngrass = 130; noak =

120; npine = 47; nshadow = 32), and applied a support vector machine 
supervised classification (SVM). SVM uses statistical learning theory to 
find an optimal hyperplane in the feature space (in this case character
ized by the red, blue, green, and near infrared bands of the pan- 
sharpened image) that maximizes the separation of the classes (grass, 
pine, oak, and shadow; Cortes and Vapnik, 1995; Gunn, 1998). We 
applied a radial basis function kernel to allow the hyperplane to be non- 
linear in feature space. 

To rectify spurious isolated pixels in the resulting classification, we 
used post-classification majority analyses (3 × 3 window, center pixel 
weight = 1), which re-classified isolated pixels to match their majority 
surroundings. To determine how many iterations of majority analysis to 
apply, we compared the results with the training data; we ran the ma
jority analysis twice. Sharpening, classification, and post-hoc majority 
analyses were done in ENVI 5.3 (Exelis Visual Information Solutions, 
2015); results assessment was done using the “caret” package in R 
(Kuhn, 2019; R Core Team, 2020). 

Finally, to complete the vegetation classification map, we needed to 
predict vegetation type in the shaded cells, which was impossible using 
IKONOS data alone. To do this, we applied the following algorithm: (1) 
assign cells of height < 1 m (according to a canopy height model, see 
below) to grass; (2) assign cells for which the majority of surrounding 
cells (within 1 m) were a single vegetation type to that type; (3) in the 

Fig. 1. Summary flowchart of datasets, methods, results, and analyses. Please see text for methods descriptions and results assessments.  
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case of cells for which no immediately surrounding non-shadow type 
was in the majority, iteratively extend the neighborhood by one meter 
and assign the shaded cell the classification of the the plurality sur
rounding cell vegetation type, once it existed. To assess the efficacy of 
this algorithm, we tested it on a simulated image comparable to the 
IKONOS classification, in which the true vegetation cover of the 
“shaded” pixels the algorithm aimed to assign was known — such that 
we could compare the cover predicted by the algorithm to the known 
cover. To create the test image, we sliced the classified IKONOS raster 
into north-south strips of random width (10–40 1-m pixels) and 
reshuffled those strips. We then assigned cells on the original classified 
image which coincided with shadow cells on the simulated image as 
“unknown,” and applied our shadow-filling algorithm to classify them. 
The purpose of the north/south strips was to maintain a realistic ge
ometry (size, shape, and spatial relationship) of the areas considered 
unknown/shaded. This is a good measure of accuracy because it pro
vides a test of the algorithm’s competency in a context that is highly 
comparable (very similar geometry of “unknown” areas) to the problem. 

The final vegetation classification map had an overall proportion 
correct classification of 0.84 (95% confidence interval: 0.79, 0.84) and 
Kappa = 0.76 (Table 1). Except in the case of oak, specificity (proportion 
of absence correctly identified) was higher than sensitivity (proportion 
of presence correctly identified) for all cover types. The shadow-filling 
algorithm had a mean proportion correct classification of 0.78 (sd =
0.012; n = 15 reshuffling tests) and a mean Kappa of 0.62 (sd = 0.017). 
Together, given that 7.7% of the classification was shaded, the expected 
overall accuracy of the final map is 0.84 (Fig. 2). 

2.2.2. Study area digital surface model 
A digital surface model (DSM) – capturing both the terrain and the 

vegetation structure – was required to determine which areas on the 
ground were visible to the ECOSTRESS sensor (given the sensor’s 
viewing angle) and which were shaded (given solar geometry). We 
formulated a DSM using a lidar acquisition taken on April 20, 2009. The 
acquisition had an average posting density of 4.1 points/m2, a footprint 
of approximately 18 cm, and a vertical accuracy of − 0.01 ± 0.05 m (i.e. 
lidar-based elevation was, on average, slightly lower than actual 
elevation). To address errors associated with irregularities in lidar-based 
height data, which may be associated, for example, with the first lidar 
return penetrating into the canopy (please see Khosravipour et al., 2014 
for additional discussion of “pit” causes), we used the “pitfree” algo
rithm, as implemented in the lidR package, to calculate the DSM 
(Roussel and Auty, 2020; Khosravipour et al., 2014). In short, the pitfree 
algorithm constructs a population of height models: a complete model 
which uses all lidar first returns, and several partial height models, using 
only lidar first returns from above specified height values. It combines 
these into a single height model, which has the maximum model height 
value at each location (Khosravipour et al., 2014). 

Because the lidar acquisition was in 2009, we wanted to ensure that 
there had not been extensive structural change between 2009 and the 
thermal measurements. To assess the DSM, we separated it into a digital 
terrain model (DTM) and a canopy height model (CHM; DSM = DTM +
CHM), and we compared the canopy height model to tree heights 
measured in the field in June 2018. We created the digital terrain model 
(DTM) using the lidar and a Delauny triangulation-based spatial inter
polation, which builds triangles to maximize minimum triangle angles 
and linearly interpolates within triangles (Roussel and Auty, 2020). We 
calculated a canopy height model as the difference between the DSM 
and the DTM. In the comparison of CHM and field data, we omitted 
under-story trees, defined as individuals located sufficiently close to a 
taller tree that we expected that they were underneath the neighbor’s 
crown. The definition of “sufficiently close” depended on the size of the 
neighbor: we used allometric equations developed using field mea
surements at the site to estimate tree crown widths (Fig. S3). We defined 
heights of the remaining trees, allowing for minor crown asymmetry, by 
extracting the maximum CHM value within a 2-m buffer of a surveyed 
tree trunk location, rather than the CHM height at the exact trunk 
location. 

The correlation between tree heights measured in the field and the 
lidar-based canopy height model was 0.90. Based on the comparison 
between the CHM and the field data, we applied a minor linear 
correction to CHM values >3 m (Fig. S4), which we combined with the 
DTM to recalculate a corrected DSM. The correction increased very large 
values of the DSM by up to 4.0 m and decreased small values by up to 
1.0 m, but most corrections were minor: the median magnitude of 
correction was 0.04 m (Q1: 0.00 m, Q3: 0.46 m). The direction of the 
corrections for taller trees made sense, because lidar typically un
derestimates tree heights (Disney et al., 2010). Additionally, trees may 
have grown between the lidar acquisition and the thermal 
measurements. 

2.2.3. Study area leaf-expanded periods 
The final characterization of the study area required for this work 

was a determination of leaf-expanded periods in 2018, 2019, and 2020; 
it was meaningful to measure leaf temperature with a thermal camera 
during these time periods only. To define leaf-expanded periods algo
rithmically, we used gap fraction data from three upward-pointing 
digital cameras (Ryu et al., 2012). Each camera imaged several 
branches, and together they collected data representative of the entire 
site: plant area index calculated using camera data was linearly related 
to plant area index calculated using spatially-extensive sampling across 
the site (R2 = 0.97, as described by Ryu et al., 2012. Please see Fig. S5 
and its figure legend for details of the algorithm). 

Beginning and end dates of the 2018 and 2019 leaf-on periods, and 
the beginning date of leaf-on in 2020, never varied by greater than six 
days among the three digital cameras (Fig. S5). The leaf-on period of 
2018 was defined as April 24–September 5 (DOY 114–248); the leaf-on 
period of 2019 was April 23–October 12, (DOY 113–285), and the leaf- 
on period in 2020 was April 20–July 30 (DOY 111–212). Combined with 
thermal camera deployment dates, these dates defined analysis times. 

2.3. Thermal measurements 

2.3.1. Field-based thermal remote sensing: FLIR camera 
During the leaf-expanded periods of 2018, 2019, and 2020 (roughly 

aligning with the dry season at this site), we collected 12,324 half-hourly 
thermal images with a FLIRA325sc thermal camera: 1036 in 2018 (July 
18, 2018 - September 5, 2019), 6495 in 2019 (May 30, 2019 - October 
12, 2013), and 4793 in 2020 (April 20, 2020 - July 30, 2020). One- 
hundred seventy six of these were omitted from further analysis due 
to precipitation or missing ancillary data required for calibration (see 
below). The camera was fitted with a lens with 45◦ field of view, was 
enclosed in weather-proof housing with a germanium window, and was 
mounted 18 m above ground level at an inclination angle of − 14◦, 

Table 1 
Vegetation classification confusion matrix and statistics by class. “A” is the 
prevalence of predicted cover presence in the case of true presence, “B” is the 
prevalence of false positive predictions, “C” is the prevalence of false negative 
predictions, and “D” is the prevalence of predicted cover absence in the case of 
true absence. Bold denotes correct classifications.    

Cover Class 

Prediction  grass oak pine shadow 

grass  102 5 1 1 
oak  27 109 7 4 
pine  0 6 37 0 
shadow  1 0 2 27 

Statistic Formula     

sensitivity (S1) A/(A + C) 0.79 0.91 0.79 0.84 
specificity (S2) D/(B + D) 0.97 0.82 0.98 0.99 
balanced accuracy (S1 + S2)/2 0.88 0.86 0.88 0.92  
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pointing approximately northeast. It had a 240 × 320 pixel resolution, 
which translates to an on-the-ground resolution ranging from about 6.5 
cm (at a 25 m distance from the camera) to about 51.8 cm (at a 200 m 
distance from the camera). Broadly, the vegetation viewed by the FLIR 
was representative of the entire 1 × 1 km area around the flux tower 
(Fig. S6). 

In total, we calibrated 24 vegetation regions of interest (ROIs) in the 
camera’s field of view (Fig. 3). We selected ROIs as representative of 
ecosystem vertical structure and of single canopies as possible, while 
also minimizing contamination by branches and background pixels. To 
keep ROIs consistent across the years of measurement, we detected shifts 
in the camera’s field of view using a Sobel filter to find edges within each 
image and a Fourier fast transform to convolve sequential, filtered im
ages. In the case of shifts, the maximum of the convolution was offset 

from the center of the image. There were three shifts during our analysis 
period, and we adjusted ROI locations accordingly. In addition to “bulk” 
canopy ROIs, as outlined in Fig. 3, we separately considered canopy tops 
and bottoms, as defined by the top and bottom thirds of ROI pixel rows. 

We followed methods detailed in Aubrecht et al. (2016) and John
ston et al. (2021) to correct the raw images for target emissivity, dis
tance between sensor and target, air temperature, air transmissivity, 
reflected radiation (assumed originating from the sky), and the effects of 
the enclosure window (please see Table S2 for further details on 
instrumentation). We calculated transmissivity (0.971) and reflectivity 
(0.004) of the germanium protective enclosure window (Edmund Optics 
8–12 μm anti-reflection coated) using curves provided by Edmund Op
tics, and we measured window temperature on the internal window 
surface with a thermocouple. For the 8.5% of images for which we did 

Fig. 2. (a) IKONOS image of the area surrounding the US-Ton flux tower, linearly stretched to enhance the visible difference between pines (more blue, more 
numerous in the northeast corner) and oaks (darker green). Non-vegetation areas include roads and a seasonal pond in the south. (b) Classified and shadow-filled 
raster covering the same extent as (a). (For color, the reader is referred to the web version of this article.) 

Fig. 3. (a) FLIR A325sc thermal image, with outlined regions of interest (ROIs). Oak (‘o’) ROIs are blue, pine (‘p’) ROIs are white, and grass (‘g’) ROIs are green. (b) 
Red/green/blue image of the approximate FLIR FOV with approximate ROIs, for context. (For color, the reader is referred to the web version of this article.) 
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not have window thermocouple readings, we applied a simple linear 
regression of window temperature as a function of air temperature to 
predict the missing data (adjusted R2 = 0.96, Fig. S7). We used the two- 
lid emissivity box method to measure plant tissue emissivities in 
December 2019 (Rubio et al., 1997, 2003), resulting in the following 
values: dry grass emissivity = 0.966, oak leaf emissivity = 0.985, and 
pine leaf emissivity = 0.990 (Johnston et al., 2021). Assuming constant 
emissivity of vegetation is a simplification because leaf emissivity is 
variable according to ontogeny (Richardson et al., 2020) and water 
content (Meerdink et al., 2019). However, we expect that the effect of 
using constant emissivities in this case is minor, as the grass was largely 
senescent and the leaves fully expanded during measurement periods. 
Finally, we assumed that the emissivity of the sky (contributing radia
tion reflecting off targets) was 1; this is also a simplification (Brutsaert, 
1975), but it minimizes errors associated with estimating sky trans
missivity (please see Johnston et al., 2021 for further discussion). 

The specified accuracy of the FLIR A325sc is ±2 ◦ C. A comparison of 
FLIR measurements to two independent temperature measurements of a 
concrete reference panel, mounted on the ground near the center of the 
camera’s field of view, found that the camera’s RMSE across five months 
of half-hourly imaging (June 1–October 31, 2019) is within this limit, 
though error associated with individual images may be somewhat larger 
(particularly at times of high light [Johnston et al., 2021], and see 
Fig. S8 for FLIR vs. reference panel thermocouple [TC] and infrared 
thermometer [IRT] comparisons at ECOSTRESS overpass times). We 
quantified error for each thermal image corresponding with an ECO
STRESS overpass using the reference TC and IRT measurements of the 
panel. In the case that both the mean TC measurement and the IRT 
measurement were warmer than the FLIR measurement of the panel, 
error was positive, with a magnitude equal to the larger of the IRT - FLIR 
or mean TC - FLIR difference. In the case that both reference measure
ments were cooler, FLIR error was negative, with a magnitude equal to 
the larger of the FLIR - IRT or FLIR - mean TC difference. In the case that 
one reference measurement was warmer and one cooler, we assigned 
both a positive and a negative error to the FLIR measurements, with 
magnitudes of the differences between the FLIR and the references. TC 
and IRT measurements of the reference panel were available only after 
June 16, 2019. For the eight scenes before this date, we estimated errors 
based on SW radiation. Three scenes with SW = 0 were assigned error 
bars with length = mean of measured night-time errors; five scenes with 
SW > 0 were assigned the error of their nearest SW neighbor (always 
<25 W/m2 difference). 

2.3.2. Satellite thermal remote sensing: ECOSTRESS 
We downloaded all ECOSTRESS Level 2 land surface temperature 

and emissivity (LST&E) swaths (Hulley and Hook, 2018; Fisher et al., 
2020) that corresponded geographically with the 1 × 1 km area centered 
on the eddy covariance tower and temporally with leaf-expanded con
ditions and thermal camera images (within 10 min). We included only 
scenes for which orbit correction had been preformed, and we masked 
all pixels covered by clouds and which were not considered to have “best 
quality” LST&E data (Hulley and Freepartner, 2019). We omitted scenes 
in which >1% of the pixels were masked, to maintain comparability 
between acquisitions. Fifty-three ECOSTRESS acquisitions, collected at 
diverse times of day and with view zenith angles 2.9–28.8 degrees 
(median: 14.9 degrees), met these requirements (Fig. S9). There are 
several non-vegetated areas near the flux tower, including a narrow dirt 
road, minimal infrastructure, and a seasonal pond (Fig. 2). ECOSTRESS 
pixels corresponding with these areas were masked and omitted from 
subsequent analyses. Error was quantified as the ECOSTRESS-reported 
land surface temperature accuracy, and assumed to apply in both the 
positive and negative directions. 

2.3.3. Comparing field-based and satellite thermal remote sensing 
To compare thermal camera and ECOSTRESS measurements of sur

face temperature, it was necessary to reconcile disparate measurement 

extents and spatial scales. Rather than attempting to downscale ECO
STRESS, we up-scaled FLIR to create a thermal image that emulates 
ECOSTRESS’ spatial resolution. To do this, we used FLIR measurements 
to define temperatures of “pure” ECOSTRESS pixel components: oaks, 
pines, and sunlit and shaded grass. We converted those temperatures to 
energies and calculated the FLIR analog for each ECOSTRESS pixel via 
weighted average, with weights corresponding to the pixel-level prev
alence of the pixel components. 

FLIR − based temperature70x70m = Planck− 1

[
∑i=nveg

i=1
fractioni*energyi

]

, (1)  

where “Planck” is Planck’s Law, used to convert between temperature 
and energy, nveg is equal to four (sunlit grass, shaded grass, oak, and 
pine), “fraction” is fractional cover determined using the vegetation 
classification, digital surface model, and solar and sensor geometries, 
and “energy” is aggregated from all ROIs of each vegetation type, as 
described. Finally, we re-converted energy to temperature. 

The temperature of shaded grass was defined as the mean of the 
lowest quartile of grass pixels, while sunlit grass temperature was the 
mean of the highest quartile. Definitions of oak and pine temperatures 
depended on the FLIR map version: for the bulk version, pure oak and 
pine temperatures were the temperatures associated with the mean 
energy of all oak or pine pixels in every calibrated oak or pine ROI, 
respectively. For the “top” version, oak and pine temperatures were 
mean oak and pine top temperatures, respectively; for the “bottom” 
version, oak and pine temperatures were mean oak and pine bottom 
temperatures. In five additional versions, the FLIR map was based on 
only one of the “pure” components: sunlit grass only, shaded grass only, 
all grass, bulk oak only, or bulk pine only. FLIR-based temperatures 
based on single components were invariant across each scene. 

We quantified uncertainty intervals associated with the difference 
between ECOSTRESS and FLIR measurements according to Eqn. 2: 

ECOSTRESS − FLIRerror =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

FLIR2
error + ECOSTRESS2

error

√

, (2)  

where FLIRerror was based on the difference between the FLIR and 
reference measurements, as described, and ECOSTRESSerror was as 
reported. 

2.4. Data visualization and statistical analyses 

To elucidate vertical patterns of intra-canopy (top vs. bottom) and 
ecosystem component (bulk pine vs. oak vs. grass) temperatures, we 
plotted diurnal temperature dynamics. We explored environmental 
correlates of the vertical patterns of intra-canopy temperatures by 
comparing bottom minus top canopy temperature differences with over- 
minus under-story shortwave radiation, longwave radiation, air tem
perature, wind speed, and vapor pressure deficit, as well as with tur
bulence (ustar) and oak trunk temperature (measured via infrared 
thermometer). 

To assess the correspondence between ECOSTRESS measurements 
and spatially-explicit FLIR-based temperatures, we compared pixel and 
mean scene temperature values, and we examined comparative scene 
temperature variability. To determine the relevance of FLIR end- 
member choices (canopy tops vs. bottoms vs. bulk; oaks vs. pines vs. 
sunlit grass vs. shaded grass vs. a hillshade-informed weighted combi
nation of all) to the comparison with ECOSTRESS, we compared distri
butions of ECOSTRESS - FLIR mean scene temperature differences, with 
the FLIR values as calculated using the various choices. We assessed 
statistical significance of these different end-member choices using one- 
way ANOVAs and post-hoc Tukey HSD tests to compare means, and 
using Komolgorov-Smirnov tests to compare distributions. 
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3. Results 

3.1. Vertical temperature heterogeneity 

3.1.1. Within tree canopies 
Hypothesis 1a, that the upper leaves in tree canopies would be 

warmer than the lower leaves, particularly at times of high incoming 
solar radiation, was not supported by thermal camera measurements. 
Rather, the opposite was true: for both oaks and pines during the day, 
temperatures of the lower canopy were warmer than temperatures of the 
upper canopy (Fig. 4). This pattern was stronger in oaks compared to 
pines; however, it was remarkably consistent across all tree ROIs despite 
variability in ROI shapes and pixel sizes, in canopy height above the 
ground, and in crown geometries (Fig. S10). At night, the mean tem
perature of oak canopy tops and bottoms equalized, while mean pine 
canopy bottoms were typically slightly cooler than tops (Fig. 4). 

The daytime difference in temperatures between the tops and bot
toms of the canopies was moderately positively correlated with the 
daytime difference between over- and under-story SW radiation 
(Spearman correlation ρ = 0.50, Fig. 5a) and moderately negatively 
correlated with the daytime difference between over- and under-story 
LW radiation, air temperature, and vapor pressure deficit (ρ = − 0.47, 
− 0.50, and − 0.50, Fig. 5b, c, d). Conversely, the daytime canopy 
temperature differences were not highly correlated with daytime dif
ferences between over- and under-story wind speed (ρ = − 0.01, Fig. 5e); 
turbulence was more relevant (ρ = 0.34, Fig. 5f). Additionally, the 
daytime canopy temperature vertical difference was correlated with 
daytime oak trunk temperature (ρ = 0.35, Fig. 5g). 

Hypothesis 1b, that tree canopies would be more thermally homo
geneous at night than during the day, was supported, particularly for 
oaks: over the full time series of images, the mean daytime (incoming 
shortwave radiation > 0 W/m2) temperature difference between oak 
canopy top and bottom thirds was 0.48◦C (standard deviation = 0.72); 
between pine canopy top and bottom thirds, the mean difference was 
0.31◦C (sd = 0.49). Considering only times when incoming solar radi
ation was greater than its mean daytime value (516 W/m2), the mean 

difference between oak canopy top and bottom thirds increased to 
0.75◦C (sd = 0.77), while the mean difference between pine canopy top 
and bottom thirds was 0.51◦C (sd = 0.34). During the night (incoming 
shortwave radiation = 0 W/m2), canopy bottoms were slightly cooler 
than canopy tops (oak: mean difference = − 0.05◦C, sd = 0.34; pine: 
mean difference = − 0.52 ◦C, sd = 0.62). At night, canopy temperature 
differences were less strongly correlated with all micro-climatic gradi
ents except for wind speed (Fig. 5), but they were most highly correlated 
with the night-time air temperature gradient (ρ = − 0.41, Fig. 5c). Please 
see supplemental Fig. S11 for discussion of other, finer-scale diurnal 
patterns. 

3.1.2. Among trees and grass 
Oaks, pines, and grass exhibited similar patterns of warming and 

cooling throughout the day (Fig. 6). During the morning hours before 
sunrise, all three were slowly cooling at a rate comparable to that of air 
(0.2–0.3◦C per hour). Following sunrise, plant temperatures rose 
increasingly quickly for 2–4 h and then continued to rise more slowly 
until early afternoon. In the case of oaks and pines, the usual peak 
warming rate was centered at 06:00 (bulk oak canopies: 1.9◦C/h with a 
standard error of 0.2◦C; pine canopies: 1.5◦C/h with a standard error of 
0.2◦C). Grass warming peaked later in the morning and at a higher value 
(3.4◦C/h, se = 0.3◦C at 07:30), while the air changed temperature 
comparatively slowly, reaching a maximum warming rate of only 1.0◦C/ 
h (se = 0.2◦C). Grass started cooling first, beginning around 12:30, 
followed by oaks (at around 14:30) and pines (at around 15:00). The air 
did not begin to cool until about 16:00. Temperatures then fell 
increasingly quickly until late afternoon (oak peak cooling: 1.8◦C/h at 
18:30; pine peak cooling: 1.6◦C/h at 18:30; grass peak cooling: 2.5◦C/h 
at 17:30; air peak cooling: 1.2◦C/h at 19:00), followed by slower cooling 
until the next sunrise. During the day, vegetation temperatures nearly 
always changed more quickly than air temperature, with grass warming 
and cooling the fastest, then oak, then pine (Fig. 6). 

Comparisons of bulk temperatures among the vegetated components 
of the ecosystem demonstrate that vertical temperature heterogeneity 
was present not only within canopies, but also across ecosystem 

Fig. 4. Oak (a) and pine (b) canopy tops were typically cooler than canopy bottoms during the day, and often slightly cooler during the night. N = 170,744 points for 
the Quercus douglasii (QUDO) plots (20 oak ROIs x 12,148 images), and n = 73,176 data points from the Pinus sabiniana (PISA) plots (6 pine ROIs x 12,148 images). 
Points are colored by incoming shortwave radiation, means are denoted by open circles, and cyan lines are fourth-order smoothers, fit to data from each tree ROI 
individually. (For color, the reader is referred to the web version of this article.) 
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vegetation functional types. Hypothesis 1c, that tree leaves would be 
consistently cooler than the under-story grass, was partially supported: 
taller vegetation (pines and oaks) was considerably cooler than the 
senesced grass under-story during the day, but it was typically warmer 

during the night (Fig. 7a, b). When incoming shortwave radiation was 
positive, the mean difference between average grass and average oak 
temperatures was 4.3◦C (sd = 5.0); the mean difference between 
average pine and average grass temperatures was 4.4◦C (sd = 5.7). 

Fig. 5. Relationships between the canopy 
temperature differences (including both 
oaks and pines) and (a) incoming SW radi
ation measured over the canopy minus out
going SW radiation measured in the under- 
story; (b) incoming LW radiation measured 
over the canopy minus outgoing LW radia
tion measured in the under-story; (c) over- 
minus under-story air temperature; (d) over- 
minus under-story VPD; (e) over- minus 
under-story wind speed; (f) turbulence (re
ported as “ustar” by Ameriflux); and (g) oak 
trunk temperature, measured via infrared 
thermometer. “cor” denotes Spearman cor
relations. (For color, the reader is referred to 
the web version of this article.)   
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During times of high incoming shortwave radiation (> 516 W/m2, the 
mean daytime value), grass temperatures were, on average, 8.0◦C 
warmer than mean oak temperatures (sd = 3.6◦C), and 8.7◦C warmer 
than mean pine temperatures (sd = 3.9◦C). At night, grasses were an 
average of 2.0◦C cooler than oaks (sd = 1.2◦C) and 3.6◦C cooler than 
pines (sd = 1.7◦C). 

Between the two taller (tree) vegetation types, temperatures were 
more similar than between either tree type and the grass (Fig. 7c). Oaks 
were, on average 0.2◦C warmer than pines during the day (sd = 0.9◦C), 
0.7◦C warmer during the > 516 W/m2 part of the day (sd = 0.7◦C), and 
1.6◦C cooler during the night (sd = 0.8◦C). Pines nearly always expe
rienced lower diurnal temperature variability than oaks: on average, the 
daily range of pine temperatures was 2.3◦C lower than the range of oak 
temperatures (sd = 1.0◦C). 

3.2. Comparison of thermal camera and satellite temperature estimates 

Despite the consistent patterns of intra-canopy vertical temperature, 

Hypothesis 2a – that ECOSTRESS and FLIR temperatures would align 
more closely when FLIR temperatures were calculated using top-of- 
canopy measurements rather than bulk average, or bottom-of-canopy 
measurements – was refuted (Fig. 8, left-most three boxes). There 
were no statistically significant differences in either means or distribu
tions of ECOSTRESS vs. FLIR comparisons based on FLIR canopy vertical 
end-member choice (ANOVA means comparison: F(1,157) = 0, p = 0.99; 
Komolgorov-Smirnov pairwise distribution comparisons: D = 0.08, 
0.09, 0.11, p = 1.00, 0.98, 0.89). Rather, the mix of vegetation included 
in the FLIR calculations was more relevant, emphasizing the relative 
importance of plant functional type in extrapolating FLIR measure
ments, compared to intra-canopy vertical heterogeneity (Fig. 8). In 
particular, grass cover was important: there was a significant difference 
between FLIR - ECOSTRESS distribution means when FLIR temperatures 
were calculated using only sunlit grass temperature vs. all other options 
(F(5,287) = 7.01, p<0.001), and there were significant differences be
tween all distributions except: the three weighted options and oak only 
(D = 0.15, p = 0.59), and oak only and all grass (D = 0.21, p = 0.21, 
Fig. 8). 

The relative unimportance of intra-canopy thermal gradients in the 
FLIR/ECOSTRESS comparison is not surprising given the small magni
tude of the gradients compared to the divergence between camera and 
ECOSTRESS temperatures. At the spatial scale of scenes (116–142 
pixels), mean ECOSTRESS and FLIR-based surface temperature mea
surements were strongly related (Fig. 9a, Pearson correlation coefficient 
= 0.98, n = 53). However, during the daytime, they diverged notably, 
with >60% of daytime scene differences (17 of 28) exceeding the 
combined ECOSTRESS and FLIR errors (Fig. 9c). While the average 
daytime difference between mean FLIR scene temperature and mean 
ECOSTRESS scene temperature was only − 0.3◦C (sd = 3.4◦C), the mean 
of absolute daytime temperature differences was 2.6◦C (sd = 2.1◦C), as 
ECOSTRESS temperatures were typically warmer during high light and 
FLIR temperatures were warmer during low light (Fig. 9a, c). 
Conversely, all but four (of 25) night-time differences between ECO
STRESS and FLIR-based mean scene temperatures were within com
bined ECOSTRESS and camera margins of error, with FLIR temperatures 
generally a fractional degree warmer (mean absolute difference between 
FLIR and ECOSTRESS was 0.8◦C [sd = 0.5◦C]). Within scenes, though 
the ECOSTRESS - FLIR pixel-scale mismatches were often somewhat 
autocorrelated, high mismatches were not consistently attributable to 
any particular part of the study area (Fig. 10). 

These results are not substantively different given different defini
tions of shaded and sunlit grass end-members. For example, when sunlit 
and shaded grass are both assigned mean grass temperature, the average 

Fig. 6. Slopes of bulk oak, pine, and under-story grass temperature changes 
throughout the day (including all days in the measurement period), calculated 
in a moving window of 1.5 h. Error bars are ± 1 standard error of the slope 
estimate. X-axis labels are the center of the moving window. (For color, the 
reader is referred to the web version of this article.) 

Fig. 7. Comparisons between mean grass temperatures and (a) mean oak temperatures and (b) mean pine temperatures. Points (n = 12,148) are means across ROIs, 
and the cyan lines show the smoothed relationships between mean tree temperatures and the grass ROIs separately. Panel (c) shows a comparison between mean oak 
and mean pine temperatures. Colors are linearly scaled according to incoming shortwave radiation. Note that (a) and (b) share a y-axis, while (c) is scaled differently. 
(For color, the reader is referred to the web version of this article.) 
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daytime difference between mean FLIR scene temperature and mean 
ECOSTRESS scene temperature is − 1.1◦C (sd = 3.6◦C), and the average 
absolute difference is 2.8◦C (sd = 2.5◦C). When shaded grass is the mean 
of grass pixel temperatures and sunlit grass is the mean of the top 5% of 
grass pixel temperatures (an extreme choice intended to push the FLIR 
measurements closer to ECOSTRESS measurements), the average day
time difference between mean FLIR scene temperature and mean ECO
STRESS scene temperature is 0.1◦C (sd = 3.3◦C), but the average 
absolute difference is 2.7◦C (sd = 1.9◦C). 

Hypothesis 2b, that ECOSTRESS and FLIR thermal measurements 
would deviate most at times of highest thermal heterogeneity and least 
at times of lowest thermal heterogeneity, was partially supported, in 
that the largest absolute differences between FLIR and ECOSTRESS 
tended to be at times of high horizontal thermal heterogeneity (Fig. 9a, 
Pearson correlation between absolute ECOSTRESS - FLIR mean scene 
difference and FLIR [ECOSTRESS] IQR = 0.38 [0.56]). However, attri
bution of temperature heterogeneity as the cause of the high mismatches 
between ECOSTRESS and FLIR temperature estimates was not 
straightforward because thermal heterogeneity was strongly associated 
with higher incoming SW radiation (Fig. 9b; correlation between 
incoming SW and the inter-quartile range of the ECOSTRESS [FLIR] 
scene temperatures was r = 0.91 [0.84]). Results of regression models 
indicate that SW radiation is the stronger predictor of the mismatches: 
considering only one of the correlated predictors as a candidate (ECO
STRESS IQR, FLIR IQR, or incoming SW), we found that the model 
including SW radiation was most explanatory (Adjusted R2 = 0.71 vs. 
0.49 and 0.36 for models substituting ECOSTRESS scene IQR and FLIR 
scene IQR predictors for SW predictors, respectively), and it showed less 
residual pattern (models not shown). It is likely, therefore, that SW ra
diation underlies both the thermal heterogeneity and the FLIR/ECO
STRESS mismatch. 

There was a clear quadratic relationship between the mean ECO
STRESS - FLIR scene temperatures and daytime incoming SW radiation 
(Fig. 9c). At low levels of incoming SW, ECOSTRESS measurements were 
cooler than FLIR measurements: in the lowest quartile of incoming SW 
(0 < SW < 223W/m2), the average ECOSTRESS - FLIR mean scene 
temperature difference was − 2.4C (range = − 5.2 to − 0.5C, n = 7 
scenes). As incoming SW radiation increased, ECOSTRESS temperatures 
became increasingly warmer than FLIR temperatures: in the highest 
quartile of incoming SW (> 765 W/m2), the average ECOSTRESS - FLIR 
mean scene temperature difference was 4.2◦C (range = 0.4 to 7.5◦C, n =
7 scenes). 

Land surface temperature errors reported by ECOSTRESS were not 
associated with incoming SW radiation (mean daytime scene error =
1.4◦C, sd = 0.3◦C, range 0.9–1.9◦C; mean night-time scene error =
1.4◦C, sd = 0.3◦C, range = 0.9–2.2◦C; Pearson correlation between SW 
and error = − 0.07, Fig. S12). FLIR errors tended to have a larger range: 
positive error ranged from 0 to 3.7◦C (mean = 0.5◦C, sd = 1.1◦C), and 
negative error ranged from 0 to 3.5◦C (mean = 1.7 ◦C, sd = 0.7◦C). FLIR 
positive error was strongly associated with incoming SW (Pearson cor
relation = 0.76, Fig. S12), and rose sharply after about 600 W/m2 of 
incoming SW radiation. 

Within-scene ECOSTRESS and FLIR pixel correlations were consid
erably weaker than the across-scene mean temperature correlation. The 
mean Pearson correlation between ECOSTRESS and FLIR-based pixel 
temperatures within daytime scenes was 0.50 (sd = 0.36), and the mean 
night-time pixel correlation was 0.097, (sd = 0.34; Fig. S13). The inter- 
quartile ranges of pixel values in ECOSTRESS vs. FLIR-based scenes were 
strongly related (Pearson correlation = 0.88, Fig. 9b), with darker scenes 
having lower thermal variability in both cases. FLIR scenes were nearly 
always more thermally variable than ECOSTRESS scenes at times of 
higher SW radiation, but the difference in pixel variability (Fig. 9b) was 
small compared to the absolute temperature differences (Fig. 9a): 
maximum difference in IQR was 1.8◦C; mean daytime absolute IQR 
difference was 0.5◦C (sd = 0.5◦C). Please see supplemental section S14 
for additional analysis and discussion of the relationships between 
ECOSTRESS and FLIR thermal measurements and environmental 
conditions. 

4. Discussion 

4.1. Intra-canopy temperature gradients 

We found that the lower parts of tree canopies were consistently 
warmer than canopy tops during the day. This pattern is the opposite of 
the pattern reported by the few other studies measuring the vertical 
distribution of leaf temperatures within canopies: Martin et al. (1999) 
found that needles on upper branches of Abies amabilis reached higher 
temperatures than leaves on lower branches in the sub-alpine zone of the 
Cascade mountains; Fauset et al. (2018) suggested that leaves positioned 
higher in the canopy of a Brazilian Atlantic forest were more commonly 
warmer than air temperature than lower leaves; Rey-Sánchez et al. 
(2016) used structural equation modeling to show that leaf temperature 
in a semi-deciduous Panamanian tropical forest was largely controlled 

Fig. 8. Distributions of FLIR-ECOSTRESS mean scene tem
peratures when FLIR temperatures were calculated in different 
ways. From left to right: FLIR temperatures calculated based 
on weighted abundances of vegetation types in a pixel using 
bulk canopy temperatures as tree end-members; FLIR tem
peratures calculated based on weighted abundances of vege
tation types in a pixel using canopy top temperatures as tree 
end-members; FLIR temperatures calculated based on 
weighted abundances of vegetation types in a pixel using 
canopy bottom temperatures as tree end-members; FLIR tem
peratures calculated as though the entire pixel were (bulk) 
oak, as though the entire pixel were (bulk) pine; as though the 
entire pixel were (bulk) grass; as though the entire pixel were 
shaded grass; and as though the entire pixel were sunlit grass. 
Please see text for statistical significance. (For color, the 
reader is referred to the web version of this article.)   
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by incident photosynthetic photon flux density in the wet season and by 
air temperature in the dry season. They found that, given the gradients 
of these drivers, upper-canopy leaves were warmer than shade leaves. 
Most recently, Miller et al. (2021) reported that the temperature of the 
upper (sunlit) foliage in the Puerto Rican wet tropics exceeded the 
temperature of lower (shaded) foliage by up to 4◦C. 

We propose that the inverse thermal gradient observed in this study 
results from the sparse nature of woodland savanna trees and tree can
opies. In closed-canopy ecosystems, solar illumination is a dominant 
control of relative leaf temperature (Doughty and Goulden, 2008; Rey- 
Sánchez et al., 2016). Because sunlight comes from above, leaves posi
tioned higher in the canopy are comparatively warmer (note that 
microclimate, physiology, and canopy/leaf structure/shape also play a 
role [Blonder and Michaletz, 2018; Smith and Nobel, 1977; Woods et al., 
2018]). In contrast, in sparser woodland savanna tree canopies, such as 
at our US-Ton study site, the thermal gradient becomes inverted 
because: (i) solar radiation undergoes less attenuation by tree canopies, 
(ii) lateral light interception by most trees is unhindered by neighbors, 
and (iii) there are large areas in which solar radiation is directly incident 
on the grassy under-story. Indeed, at our study site, measurements of 
incoming and outgoing SW radiation at 21.5 m vs. 1.06 m above ground 

level are remarkably similar (Fig. S15a). 
These differences in canopy structure have important implications 

for both the radiative and the temperature components of woodland 
savanna micro-environments. First, because the grass gets very warm 
(Fig. 7), significant longwave (LW) radiation is incident on the tree 
canopies from below (Fig. S15b). Assuming that attenuation of up
welling LW radiation by the air between grass and canopy is negligible, 
we expect that the magnitude of incident LW radiation from below is, on 
average, about 70% of the magnitude of incident SW radiation at the 
time when the canopy temperature gradient is most pronounced 
(14:00). This is a considerable radiative flux. Second, because SW ra
diation is often directly incident on the grass, some portion is reflected 
onto the bottom of the tree canopy due to the grass albedo (on average, 
about 15% of incoming SW at 14:00). Incident radiation from either 
direction will permeate through the canopy approximately according to 
Beer’s Law (Campbell and Norman, 1998). Because the tree leaf area 
index in this ecosystem is relatively low (typically <1) and summertime 
solar elevation is high, it is reasonable to assume 60–80% transmittance 
(Monson and Baldocchi, 2014); this would yield approximately 
balanced radiative loading on the canopy tops and bottoms – in marked 
contrast to the strongly asymmetric radiative loading in closed-canopy 

Fig. 9. (a) Comparison of ECOSTRESS and FLIR-based temperatures, where FLIR-based temperatures were calculated according to Eqn. 1. Points colored by 
incoming shortwave radiation are individual pixels (n = 6635 pixels in 53 total scenes). Cyan points are the average temperature value for each scene (n = 53). Error 
bars in the ± y direction are the mean of pixel-wise ECOSTRESS-reported errors for each scene. Error bars in the x direction are the differences between mean FLIR 
measurement of the concrete reference panel and the IRT and/or mean thermocouple measurement of the panel. When the bar is only in the negative direction, both 
the IRT and the mean TC measurements were cooler than the FLIR. When the bar is only in the positive direction, both the IRT and the mean TC measurements were 
warmer than the FLIR. In either case, the length of the bar is the larger of the offests. Bars in both x directions denote that one of the reference measurements was 
higher that the FLIR, one lower. When FLIR errors were estimated, x error bars are dashed. (b) Comparison of ECOSTRESS and FLIR-based scene interquartile 
temperature ranges (75th - 25th quartiles). (c) Relationship between incoming SW radiation and the mean scene ECOSTRESS - FLIR mismatch. The polynomial is 
fitted only to daytime data (SW > 0 W/m2), and the error bars show the error associated with the difference between ECOSTRESS and FLIR (Eqn. 2), calculated 
separately in the positive and negative directions. (For color, the reader is referred to the web version of this article.) 
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forests. 
An approximately balanced radiation load would not, by itself, 

produce the observed inverse temperature gradients: microclimate and 
canopy turbulent energy fluxes likely also play a role. Unlike in forested 
ecosystems (e.g. Renaud et al., 2011; Davis et al., 2019), midday air 
temperature and vapor pressure deficit are typically higher in the 

woodland savanna under-story than the over-story (Fig. 5c and d; likely 
associated with the sensible heat flux emanating from the hot grass). 
Higher air temperature would make it comparatively less favorable for 
lower leaves to convect sensible heat, and higher vapor pressure deficit 
(at relatively consistent and low soil moisture in the dry season) would 
tend to decrease stomatal apertures and depress latent energy flux of 

Fig. 10. ECOSTRESS - FLIR difference images for the 53 ECOSTRESS acquisitions corresponding to FLIR collection times. Masked areas are pixels intersecting the 
road, pond, and infrastructure. Map units are UTM 10 N, and date-time labels are FLIR collection times in PST. (For color, the reader is referred to the web version of 
this article.) 
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lower leaves (Lange et al., 1971), both of which would cause relative 
warming. 

The canopy temperature gradients were also correlated with turbu
lence: increasing turbulence was correlated with comparatively warmer 
canopy bottoms (Fig. 5f). Stronger coupling of the upper canopy leaves 
to the atmosphere might decrease turbulent flux resistance (Jarvis and 
McNaughton, 1986), increasing the efficiency by which the top of the 
canopy convects sensible heat. This “convector effect” has been 
observed by Rotenberg and Yakir (2011) in a semiarid open-canopy pine 
forest. The higher sensible heat flux observed at the aerodynamically 
rougher US-Ton site compared to the aerodynamically smoother 
neighboring US-Var grassland site (Fig. S15c) is suggestive of a similar 
mechanism here; however, additional research is required to determine 
whether a convector effect implied from surface energy balance analyses 
can occur the scale of individual tree crowns. Finally, it is notable that 
the temperature of bark (and likely also the branches) exceeds leaf 
temperatures in the early afternoon by several degrees, and that bark 
temperature is positively correlated with canopy-bottom minus canopy- 
top temperature (Fig. 5g). Kobayashi et al. (2012) estimated that 12% of 
available energy at US-Ton is stored in the woody elements. If the lower 
canopy is subject to larger or more numerous woody elements, this may 
also have a significant warming influence. 

Temporal variations in thermal patterns support these proposed 
mechanisms. At night, vertical temperature differences are smaller, and 
the canopy tops tend to be slightly warmer (Fig. 4). While night-time 
radiative fluxes are similar at different vertical heights (Fig. S15), 
lower mean air temperature and vapor pressure deficit in the under- 
story would favor this pattern (Fig. 5c, d). In the early mornings, some 
oak tops are briefly warmer than oak bottoms (Fig. S10). This likely 
arises because of the rapid warming of the canopy tops in the early 
morning (Fig. S11a) due to SW radiation increasing, but before the grass 
has warmed (Fig. 7), while over-story and under-story air temperature 
and vapor pressure deficit are comparable (Fig. 5c, d), and woody ele
ments are still cool. More research is required to understand why some 
canopies exhibit more temporally auto-correlated patterns of warming 
morning - midday (Fig. S11d) while others are more temporally auto- 
correlated in the afternoon (Fig. S11c), but we expect that this is 
related to landscape position with respect to sunlight, neighbors, and 
shading patterns. 

Overall, we suggest that the daytime pattern of warmer bottoms and 
cooler tops of woodland savanna trees is the result of a suite of co-acting 
mechanisms: radiative warming of the lower canopy by the grass (both 
LW and SW), microclimatic gradients comparatively unfavorable to 
sensible and latent flux from the lower canopy, and warm woody ele
ments (likely) lower in the canopy. Based on energy magnitudes and the 
overall positive correlation between the SW gradient and the canopy 
temperature gradient (Fig. 5a), we conjecture that LW radiative warm
ing of the lower canopy by the grass is the dominant player; however, 
disentangling the effects of each driver on the thermal gradient would 
benefit from further research. In particular, (i) deployment of additional 
radiometers directly under canopies of interest would help resolve the 
within-canopy radiation environment; (ii) a higher-resolution thermal 
camera would minimize possible contamination of leaf measurements 
by (likely) warmer branches, and (iii) comparison of vertical thermal 
gradients present in individuals existing in denser vs. more open areas 
would help elucidate the relevance of the convector effect (Rotenberg 
and Yakir, 2011). Three-dimensional modeling studies (e.g. using 
CANOAK-FLiES [Kobayashi et al., 2012] or the Radiation Absorption, 
Transpiration, and Photosynthesis model [Sinoquet et al., 2001; Woods 
et al., 2018]) could also help clarify the factors responsible for the 
observed thermal gradients. 

The fact that the intra-canopy temperature gradients we report are 
inherently temperature differences (rather than absolute temperatures) 
makes them relatively robust to FLIR sensor and thermal image cali
bration error. However, given their relatively low magnitudes (Fig. 4) 
compared to plausible camera error (Fig. S8), it is useful to address the 

most likely confounding influence on these relative measurements 
explicitly: the source of reflected radiation. Radiation from any target’s 
surroundings reflects off that target and contributes to its apparent 
temperature. Correcting target temperatures for reflected radiation in
volves subtracting a reflection term from the sensor reading (Aubrecht 
et al., 2016; Johnston et al., 2021). Therefore, if the reflected energy 
originates from a cold source (e.g. the sky), the corrected target tem
perature will be relatively higher than if the reflected energy originates 
from a warm source (e.g. the ground). In calibrating tree canopy tem
peratures, we assumed that radiation reflected by all canopy vertical 
layers originated from the sky. Our results are essentially the same as 
they would be given any formulation in which radiation reflected by the 
canopy layers is the same, regardless of the magnitude of that reflection. 
However, gradients could be somewhat changed if reflected radiation 
were different for different sections of the canopy. Given the direction of 
the daytime canopy temperature gradients we report, the most conser
vative formulation would be for 100% of the radiation reflecting off 
canopy tops to be from the sky (making calibrated top temperatures as 
warm as possible), and 100% of radiation reflecting off canopy bottoms 
to be from the ground (making calibrated bottom temperatures as cool 
as possible). This is, in reality, very unrealistic: each canopy layer would 
actually reflect radiation from some combination of sky, other canopy 
leaves/branches, and the grass/ground. Regardless, results based on this 
overly-conservative formulation demonstrate that our findings 
regarding the diurnal thermal gradients in tree canopies are robust: 
daytime canopy tops are (often) cooler than canopy bottoms for 11/14 
oak ROIs and 5/6 pine ROIs (Fig. S16). 

Importantly, when temperature differences are larger than the intra- 
canopy gradients (as they are between ecosystem vegetation compo
nents or between FLIR and ECOSTRESS), the relevance of reflected ra
diation source in this ecosystem is relatively low, due to the high 
emissivities of ecosystem components (Johnston et al., 2021). 

4.2. Temperature variability among plant types 

While the intra-canopy pattern of vertical temperature gradients 
were surprising, thermal relationships among plant components in the 
ecosystem were as we expected: pine canopy temperatures followed air 
temperature more closely than oak canopy temperatures and under- 
story grasses experienced both faster warming to higher peak temper
atures and faster cooling (Fig. 6). Regarding the difference between 
pines and oaks, it has long been understood that smaller leaves such as 
pine needles have higher boundary layer conductances and are therefore 
more strongly coupled to the atmosphere (e.g. Gates et al., 1968). 
Additionally, in this ecosystem, mature pines are taller than their oak 
neighbors, which would tend to further reduce the comparative leaf 
aerodynamic resistance of the pine foliage (Wilson et al., 1987). 
Regarding the faster warming and cooling of the grasses and their higher 
daytime peak temperatures, three important factors likely contribute to 
this effect: (i) due to its very low water content, particularly during the 
dry season, the grass foliage has a lower thermal inertia (lower heat 
capacity) and thus will tend to change temperature faster than the trees 
(McAllister et al., 2012); (ii) the senescent state of the grass canopy 
during the time of study means that there is a consequent lack of latent 
cooling; (iii) relative aerodynamic smoothness of the grass reduces heat 
loss via turbulent transfer of sensible heat (Rotenberg and Yakir, 2011); 
and (iv) the grass is most proximal to soil which, when sunlit, may 
exceed 50 — and occasionally 60 — ◦C in the summertime (Johnston 
et al., 2021). 

4.3. ECOSTRESS and thermal camera temperature comparison 

In this research, we employed methods designed to reconcile the 
geographic and view angle incompatibilities between a satellite thermal 
sensor and a tower-mounted thermal camera, pointed laterally at a 
Mediterranean woodland savanna canopy from 76◦ off-nadir. Given the 
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proliferation of each of these data types (e.g. Aubrecht et al., 2016; Pau 
et al., 2018; Kim et al., 2018; Still et al., 2019; Johnston et al., 2021), the 
fundamental role played by vegetation temperature in the functioning of 
plants (Farquhar et al., 1980; Farquhar and Sharkey, 1982; Atkin and 
Tjoelker, 2003; Michaletz, 2018; Raschke, 1960) and ecosystems 
(Charney et al., 1975; Shukla and Mintz, 1982), and the omnipresent 
interest in scaling biological processes from leaves to canopies to land
scapes, understanding their correspondence is a priority. 

Our scaling methods allowed us to extrapolate the comparatively 
spatially-isolated camera measurements to the scale of the approximate 
footprint of the flux tower, yielding high correlations between ECO
STRESS scene temperatures and FLIR-based scene temperatures, as well 
as between ECOSTRESS scene IQRs and FLIR-based scene IQRs (Fig. 9a, 
b). Additionally, we found that FLIR and ECOSTRESS thermal mea
surements were, broadly, responsive to similar environmental drivers 
(Supplemental section S14). However, the mismatch between ECO
STRESS and FLIR thermal measurements was too large to detect an in
fluence of the physiologically-interesting vertical thermal gradients in 
the comparisons. 

We expected that the FLIR and ECOSTRESS measurements would be 
in stronger agreement when FLIR tree canopy temperatures were 
defined as top-of-canopy temperature, rather than bottom-of-canopy or 
bulk temperature. However, the distributions of FLIR - ECOSTRESS 
temperatures, given different end-members based on canopy height, 
were statistically indistinguishable (Fig. 8) – the magnitudes of intra- 
canopy temperature differences (usually fractional degrees) were very 
small compared to the differences between FLIR and ECOSTRESS: mean 
scene temperature differences ranged from − 7.5◦C to 5.2◦C, with a 
daytime absolute difference mean of 2.6◦C and a night-time absolute 
difference mean of 0.8◦C (Fig. 9). 

While there were some significant differences in the distributions of 
the FLIR/ECOSTRESS mean scene mismatch when the FLIR map was 
more dramatic – e.g. when only a single end-members was defined, such 
that the entire map was one temperature – the clearest driver of ECO
STRESS/FLIR mismatch was incoming SW radiation. Mismatches were 
small at night, but FLIR was significantly warmer than ECOSTRESS at 
low (but > 0) incoming SW radiation, and significantly cooler at high 
incoming SW radiation (Fig. 9). 

Given the significant number of steps required to create a thermal 
camera-based temperature image for comparison with ECOSTRESS 
measurements, there are a number of possible contributors to the 
ECOSTRESS/FLIR mismatch. First is the assumption of FLIR end- 
member representativeness. We calculated FLIR end-members as the 
mean temperature of oak and pine regions of interest (ROIs) or, in the 
case of grass, as the mean of the warmest and coolest quarter of grass 
ROIs (due its bimodal daytime temperature distribution caused by areas 
of sun and shade). We then used those end-members to predict tem
perature across the entire scene according to Eqn. 1. It is a simplification 
to assume that all oaks, all pines, all shaded grass, and all sunlit grass 
have the same temperature. Choosing mean values would tend to con
tract predicted pixel temperature variability, and the invariant nature of 
the end-members surely contributed to the unexpectedly strong rela
tionship between FLIR-based pixel temperature and canopy cover 
(Fig. S14). 

Second, the area visible to the camera did not encompass the entire 
range of canopy cover present in a scene (Fig. S6). Overall, however, 
these two contributors to the mismatch seem to have had only minor 
consequences, as FLIR-based scene temperature variability was actually 
greater than ECOSTRESS scene temperature variability (Fig. 9b), and 
omitting extrapolated pixels from the analyses did not substantively 
change the results. Alternative selection of sun and shade grass end- 
member values (both set to the mean value, or shade defined as the 
mean and sun defined as the mean of the top 5% of values) also did not 
substantively change the results. 

Third, the DSM makes the surface “opaque,” whereas in reality 
canopies are sparse. The DSM is therefore likely to project more shadows 

than truly exist, making the FLIR calculations too cool. However, given 
that the largest mismatches between FLIR and ECOSTRESS were at times 
of low solar zenith angle, this is also unlikely to have been a large 
contributor. Fourth, it is likely that the ECOSTRESS sensor images some 
amount of grass through the sparse canopies, and some amount of soil 
through the dry grass cover. We did not consider that LAI is often <1 in 
our weighted average of covers; this would tend to make ECOSTRESS 
measurements warmer than FLIR-based measurements, particularly 
during times of high light (as we observed). Finally, FLIR sensor error 
and image calibration error are other potential sources of error in the 
thermal-camera-based map: FLIR measurements of the concrete refer
ence panel diverged from independent reference measurements by a 
mean of 0.9◦C (mean of four thermocouples) and 1.1◦C (infrared ther
mometer, Fig. S8). However, even considering the largest likely uncer
tainty intervals for both the FLIR and ECOSTRESS, there were still 
significant disagreements between them at times of low and high 
incoming SW radiation (Fig. 9c). 

Caution is also merited in analyses of pixel-scale ECOSTRESS vs. 
FLIR surface temperatures (Figs. 9a, S14), because ECOSTRESS’ geo
location challenges preclude precise knowledge of measurement loca
tions – errors of about 50 m are typical. It remains valuable, however, to 
quantify the combined influence of the measurement and geolocation 
challenges on differences between ground-based and satellite measure
ments. Further, we expect that comparisons of pixel temperature vari
ability across a scene are robust to sub-pixel-scale geolocation 
uncertainty, and possible geolocation uncertainty does not have a 
statistically-significant effect on scene mean temperature comparisons 
(Fig. S17). 

Our comparisons between ECOSTRESS and an independent mea
surement (FLIR thermal camera) are comparable to those found by Sil
vestri et al. (2020), who reported pixel-based RMSEs of 0.9–4.2◦C for 
seven instances of approximately concurrent acquisitions of ECO
STRESS, ASTER, and Landsat 8 TIRS over active Italian volcanoes. They 
are larger than those found by Hook et al. (2020), who report average 
ECOSTRESS agreement with ground-based measurements of Lake Tahoe 
and the Salton Sea of 0.7–1.1◦C during the day and 1.2–1.6◦C at night, 
depending on the channel. Hook et al.’s tests were more ideal, in that 
measurements were matched within five minutes and both targets were 
large and homogeneous, allowing comparisons of radiometer measure
ments with the average of multiple ECOSTRESS pixels. They also 
effectively removed uncertainty associated with radiative transfer and 
the temperature and emissivity separation algorithm (Gillespie et al., 
1998) from their analysis by propagating ground measurements to at- 
sensor radiance and comparing brightness temperatures, rather than 
surface temperatures. 

5. Conclusions 

We measured clear and consistent intra-canopy vertical thermal 
gradients in the woodland savanna study area during the dry season: 
canopy tops were cooler than canopy bottoms during the day, largely 
associated with radiative warming from below by the senescent grass 
under-story. There were also consistent thermal differences between the 
pine, oak, and grass: grass was considerably warmer than either pine or 
oak during the day (on average, 4.3◦C warmer than oaks and 4.4◦C 
warmer than pines), and slightly cooler at night (on average, 2.0◦C 
cooler than oaks and 3.6◦C cooler than pines); pine temperature was 
more closely coupled to air temperature than oak temperature, and 
pines tended to be warmer at night and cooler during the day, compared 
to oaks. In reconciling ECOSTRESS with FLIR in-situ thermal camera 
measurements, it was important to consider temperature differences 
between vegetation types, but the magnitude of intra-canopy thermal 
gradients was negligible compared to the overall magnitude of FLIR/ 
ECOSTRESS mismatch. ECOSTRESS and the in-situ thermal camera 
measurements were responsive to similar environmental drivers and 
were in high agreement at night; however, their measurements diverged 
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at times of low and high incoming SW radiation: ECOSTRESS was cooler 
just after sunrise, and warmer at times of high incoming SW radiation. 
Continuing to develop our understanding of the correspondence be
tween ground-measured vegetation temperature and thermal remote 
sensing will help broaden the applicability of remote sensing data in 
ecological studies of temperature-mediated community dynamics, as 
benchmark measurements for terrestrial biosphere model predictions, 
and as drivers of plant physiological models of temperature-dependent 
processes. Fruitful future research directions include: mechanistic 
modeling of within-canopy thermal heterogeneity in savanna ecosys
tems, use of thermal cameras mounted on un-crewed aerial vehicles 
(UAVs) to collect more spatially-extensive temperatures with which to 
compare ECOSTRESS, and examination of the generality of the effect of 
SW radiation on temperature measurement accuracy in structurally- 
complex plant canopies. 
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