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Abstract This study examines the impact of variation in root‐zone soil moisture (RZSM), a key
component of the Earth's hydrologic cycle and climate system, on regional carbon fluxes across seven
North American ecosystems. P‐band synthetic aperture radar‐derived RZSM estimates were incorporated
into the ecosystem demography (ED2) terrestrial biosphere model through a model‐data blending
approach. Analysis shows that the model qualitatively captures inter‐daily and seasonal variability of
observed RZSM at seven flux tower sites (r = 0.59 ± 0.26 and r = 0.70 ± 0.22 for 0–10 and 10–40 cm of
soil layers, respectively; P < 0.001). Incorporating the remotely sensed RSZM estimates increases the
accuracy (root‐mean‐square deviations decrease from 0.10 ± 0.07 and 0.09 ± 0.06 m3·m−3 to 0.08 ± 0.05
and 0.07 ± 0.03 m3 ·m−3 for 0–10 and 10–40 cm of soil layers, respectively) of the model's RZSM
predictions. The regional carbon fluxes predicted by the native and RZSM‐constrained model were used
to quantify sensitivities of gross primary productivity, autotrophic respiration (Ra), heterotrophic
respiration (Rh), and net ecosystem exchange to variation in RZSM. Gross primary productivity
exhibited the largest sensitivity (6.6 ± 10.7 kg·cm−2·year·θ−1) followed by Ra (2.9 ± 7.3 kg·cm−2·year
−1·θ−1), Rh (2.6 ± 3.1 kg·cm−2·year−1·θ−1), and net ecosystem exchange (−1.7 ± 7.8 kg·cm−2·year
−1·θ−1). Analysis shows that these carbon flux sensitivities varied considerably across regions, reflecting
influences of canopy structure, soil properties, and the ecophysiological properties of different plant
functional types. This study highlights (1) the importance of improved terrestrial biosphere model
predictions of RZSM to improve predictions of terrestrial carbon fluxes, (2) a need for improved
pedotransfer functions, and (3) improved understanding of how soil characteristics, climate, and
vegetation composition interact to govern the responses of different ecosystems to changing
hydrological conditions.

1. Introduction

Soil moisture is a key variable of the earth system influencing terrestrial water, carbon and nutrient cycling,
and the exchange of carbon, water, and energy between the land‐surface and atmosphere. In particular, it
impacts meteorological, hydrological, and ecological processes and properties including surface energy bal-
ance (Berg et al., 2014; Ford et al., 2015; Gallego‐Elvira et al., 2016; Lin & Cheng, 2016; Suarez et al., 2014),
land surface albedo (Liu et al., 2014; Zhang et al., 2014), soil thermal properties (Juszak et al., 2016; Sugathan
et al., 2014), runoff (Crow & Ryu, 2009; Morbidelli et al., 2016), plant water stress (He et al., 2016), and result-
ing vegetation productivity and ecosystem carbon fluxes (Huang et al., 2016; Jia et al., 2016; McInerney &
Helton, 2016; Xu et al., 2004; Xu & Zhou, 2005).

Improved measurements of spatial and temporal patterns of variation in soil moisture are therefore
essential for improved characterization of meteorological, hydrological, and ecological processes for
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hydrological forecasting, weather prediction, and estimates of terrestrial carbon, water, and energy
fluxes. Traditionally, soil moisture has been measured through ground‐based instruments that provide
accurate, high temporal resolution information about the dynamics of soil moisture at specific locations;
however, measurements from ground‐based observations are limited in their spatial extent (Dorigo et al.,
2011). Satellite remote sensing of soil moisture is an alternative approach that can be used to provide
spatially‐comprehensive measurements of soil moisture, albeit with reduced spatial and temporal resolu-
tion compared to ground‐based sensors. Numerous satellite‐based active and passive microwave sensors
launched since 1970s have been widely used to estimate regional and global near‐surface soil moisture,
including Scanning Multichannel Microwave Radiometer (Paloscia et al., 2001), Advanced Microwave
Scanning Radiometer on the Earth Observing System (Njoku et al., 2003), the Soil Moisture and
Ocean Salinity Sensor (Kerr et al., 2012), the Advanced Scatterometer (Lindell & Long, 2016), the
Fengyun Satellites (Parinussa et al., 2014; Song & Jia, 2016), the Advanced Microwave Scanning
Radiometer 2 (Parinussa et al., 2015), and the Soil Moisture Active Passive (Entekhabi et al., 2010).
Recently, navigation signals from global navigation satellite systems have also been utilized to retrieve
soil moisture (Camps et al., 2016; Kim & Lakshmi, 2018). Though the technology to retrieve soil moist-
ure profile from spaceborne scatterometer has been developed (Wagner et al., 1999), current satellite
retrievals of soil moisture only routinely provide estimates of near‐surface soil moisture, i.e. soil moisture
in the top few centimeters of soil.

The National Aeronautics and Space Administration (NASA) Earth Ventures 1 Airborne Microwave
Observatory of Subcanopy and Subsurface (AirMOSS; https://airmoss.jpl.nasa.gov/) is a new airborne
P‐band synthetic aperture radar (SAR) designed to provide direct retrievals of root‐zone soil moisture
(RZSM) up to 120 cm in depth (depth of penetration varies depending on the amount of vegetation
cover) using active remote sensing (Tabatabaeenejad et al., 2015). As its name implies, RZSM is a
critical soil moisture state variable that influences plant functioning, including photosynthesis
(Xia et al., 2017), ecosystem respiration (Flanagan & Johnson, 2005), and soil respiration (Ito &
Ishida, 2016).

Accurate characterization of RZSM in land surface models, terrestrial biosphere models, and earth sys-
tem models is critical for accurately estimating short‐term (hourly‐yearly), medium‐term (yearly‐to‐dec-
adal), and long‐term (decadal‐to‐centennial) carbon, water, and energy fluxes. With regard to water
fluxes, previous studies have shown that there are model‐dependent, systematic biases in model‐based
estimates of soil moisture or RZSM when against ground observations (Koster et al., 2009; Loew
et al., 2013; Pan et al., 2016; Verrot & Destouni, 2016; Xia et al., 2014) and remotely sensed measure-
ments of near‐surface soil moisture (Gumuzzio et al., 2016; Polcher et al., 2016), and that models show
divergent biases (van den Hurk et al., 2016). With respect to carbon fluxes, Kim et al. (2015) demon-
strated the importance of soil moisture stress response functions for predictions of carbon fluxes in
the Ent Terrestrial Biosphere Model. In addition, two recent studies have examined the sensitivities
of soil carbon flux predictions to soil moisture at the global scale. Exbrayat et al. (2013) implemented
three different functions describing how soil moisture affected carbon decomposition rates within the
Community Atmosphere Biosphere Land Exchange land surface model coupled with the Carnegie‐
Ames‐Stanford Approach Carbon‐Nitrogen‐Phosphorus land biogeochemical model, and showed that
its predictions of soil carbon stocks varied significantly depending on the functional form chosen.
Hursh et al. (2017) analyzed the sensitivity of soil respiration measurements to soil moisture and
showed that, although soil temperature is the dominant driver of global scale variation in soil respira-
tion fluxes, within certain biomes, soil moisture is the dominant predictor of variation in soil
respiration fluxes.

In this study, we use the AirMOSS measurements of RZSM (0–100 cm) collected in luation regions spanning
five North American biomes, in conjunction with a terrestrial biosphere model, to examine the relationship
between spatial variation in RZSM and spatial variability in terrestrial carbon fluxes. Using a simple, but
effective, model‐data blending method (described in section 2.3) to assimilate the three‐dimensional
AirMOSS RZSM products into the terrestrial biosphere model we produced AirMOSS‐constrained predic-
tions of terrestrial carbon fluxes for the seven evaluation regions. We then used the RZSM measurements
and model predictions of resulting carbon fluxes to quantify the impact of spatial and temporal variation
in RZSM on the estimation of regional‐scale carbon fluxes.
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2. Materials and Methods
2.1. Study Areas

The evaluation regions are seven areas of approximately 2,500 km2 surrounding seven FLUXNET tower sites
within the contiguous United States that were surveyed by the AirMOSS project from 2012 to 2015
(Tabatabaeenejad et al., 2015; Figure 1). The Howland Forest, Harvard Forest, Duke Forest, Metolius,
Tonzi Ranch, and Walnut Gulch evaluation regions are all rectangular, 100 km × 25 km areas, while the
Marena In Situ Sensor Testbed (MOISST) site in Oklahoma is of a similar size, but has a more complex geo-
metry. Each evaluation region includes a corresponding FLUXNET tower site, specifically, the Howland
Forest main tower (USHo1; Hollinger et al., 2004), the Harvard Forest EMS tower (USHa1; Urbanski
et al., 2007), the Duke Forest loblolly pine site (USDk3; Palmroth et al., 2005), the Metolius intermediate pine
site (USMe2; Thomas et al., 2009), the Tonzi Ranch site (USTon; Baldocchi et al., 2004), the Walnut Gulch
Kendall Grasslands site (USWkg; Scott, 2010), and the Atmospheric Radiation Measurement Southern
Great Plains site (USARM) located within the MOISST evaluation region (Lokupitiya et al., 2009).

The seven evaluation regions span five North American biomes: temperate broadleaf and mixed forests
(Howland Forest, Harvard Forest, and Duke Forest); temperate conifer forests (Metolius); temperate grass-
lands and croplands (MOISST); Mediterranean forest, woodlands, and scrub (Tonzi Ranch); and deserts
and xeric shrublands (Walnut Gulch; Figure 1 and Table 1). To compare the composition of these regions,
we examined the fractions of land cover types obtained from the 30‐m National Land Cover Database
(NLCD 2011) map (Homer et al., 2015), and computed the percentage contribution of each plant functional
type (PFT) to the total canopy leaf area index (LAI) within each region. Representative species of each PFT
are given in Table 2, and details the LAI calculation can be found in section 2.5 of the manuscript. The
Howland, Harvard, and Duke Forest regions were all classified as temperate broadleaf and mixed forest;
however, the land cover and PFT composition of their plant canopies differ: the Howland Forest region is
primarily mixed temperate forest (29.2%), evergreen needleleaf forest (24.5%), and deciduous broadleaf forest
(16.4%) with late‐successional conifer and middle‐successional hardwoods as the dominant PFTs (51.4% and
16.9%, respectively); the Harvard Forest region is primarily deciduous broadleaf forest (30.8%), mixed tempe-
rate forest (22.0%), and evergreen needleleaf forest (22.0%) with mid‐successional hardwoods and northern
pines as the dominant PFTs (40.4% and 20.0%, respectively); the Duke Forest region is primarily deciduous
broadleaf forest (43.2%) and mixed forest (14.2%) with middle‐successional hardwoods and southern pines as
the dominant PFTs (38.8% and 26.9%, respectively). The Metolius region is primarily evergreen needleleaf
forest (55.2%) and shrubland (31.6%), the former being found mainly in the western part, and the latter being
found mainly in the eastern portion of the region see (Figure 1) with firs and western pines as the dominant
tree PFTs (71.3% and 26.2%, respectively). The Tonzi Ranch region is primarily grasslands (46.3%) and shrub-
lands (21.1%) with dryland C3 grass, western pines, and western hardwoods as the dominant PFTs (40.5%,
30.3%, and 21.9%, respectively). The MOISST region is primarily grasslands (44.0%) and croplands (38.3%)
with C3 crops and dryland C4 grasses as the dominant PFTs (34.7% and 29.8%, respectively). In contrast to
the above six regions, the Walnut Gulch region has a relatively homogeneous land cover, being primarily
shrubland (87.2%) with dryland C4 grass and northern pine as the dominant PFTs (68.3% and 17.2%, respec-
tively). As Figure 1 illustrates, these seven regions span a large range of biomes, land cover types, and PFT
compositions found across North America.

2.2. ED2 Terrestrial Biosphere Model

The terrestrial biosphere model used in this study is the ecosystem demography model version 2 (ED2), an
integrated terrestrial biosphere model incorporating hydrology, land‐surface biophysics, vegetation
dynamics, and soil carbon and nitrogen biogeochemistry (Medvigy et al., 2009). Like its predecessor, ED
(Hurtt et al., 1998; Moorcroft et al., 2001), ED2 tracks the changing abundance of plants of different sizes
and PFTs arising from plant growth, mortality, recruitment, and the impact of disturbances using a set of
size‐ and age‐structured partial differential equations. The size‐ and age‐structured PDEs are initialized with
an initial condition corresponding to the initial size and age distributions of the PFTs at the beginning of the
simulation. Previous studies have shown that ED2 is able to realistically represent the dynamics of vertically
resolved and spatially heterogeneous plant communities incorporating the effects of natural disturbance pro-
cesses such as fire, and anthropogenic disturbances such as forest harvesting or land clearing (e.g., Albani
et al., 2006; Hurtt et al., 2004; Medvigy et al., 2009). We used a version branched from the latest ED2
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Figure 1. Biomes in North America, and locations and NLCD land cover maps of the seven study areas.

Table 1
Percentage Abundances (%) of the Different Plant Functional Types Across the Seven Evaluation Regions

Plant functional types

Region Biome types EHW MHW LHW WHW NP LC SP WP FR DC3 DC4 CRC3 CRC4

Howland Temperate broadleaf and mixed forest 11.5 16.9 12.6 — 7.5 51.4 — — — — — 0.1 —

Harvard Temperate broadleaf and mixed forest 9.0 40.4 14.3 — 20.0 16.2 — — — — — 0.1 —

Duke Temperate broadleaf and mixed forest 10.0 38.8 7.3 — — — 26.9 — — 0.3 — 16.8 —

Metolius Temperate conifer forest 0.1 — 0.2 0.6 0.1 — — 26.2 71.3 1.2 — 0.3 —

Tonzi Mediterranean forest, woodland, and scrub 1.7 — 0.2 21.9 — — — 30.3 5.2 40.5 — 0.2 —

Walnut Deserts and xeric shrublands 1.5 — — — 17.2 — — 9.4 0.6 — 68.3 3.0 —

MOISST Temperate grasslands and croplands 7.7 21.0 0.7 — — — 3.8 — — 2.3 29.8 33.3 1.4

Note. Abundance values reflect the percentage of the total LAI within each region. Details on this calculation can be found in section 2.5. CRC3 = C3 crop;
CRC4 = C4 crop; DC3 = dryland C3 grass; DC4 = dryland C4 grass; EHW= early‐successional hardwood; FR = fir; LAI = leaf area index; LC = late‐successional
conifer; LHW= late‐successional hardwood; MHW=middle‐successional hardwood; NP = northern pine; SP = southern pine; WHW=western hardwood; and
WP = western pine.

10.1029/2018JG004589Journal of Geophysical Research: Biogeosciences

ZHANG ET AL. 3211



github repository (Rev‐84, https://github.com/EDmodel/ED2; Knox, 2012; Longo, 2014) to conduct the
model simulations. The source code used in this study can be downloaded from https://moorcroftlab.oeb.
harvard.edu/code‐data. The latest ED2 version incorporates comprehensive biophysical and
biogeochemical modules that solve the coupled energy, water, and carbon budgets of the plants within the
canopy at sub‐daily scale. This model accounts for important effects of day‐to‐day and within‐day
variability, and competition for light and water over heterogeneous landscapes. In terms of soil moisture
dynamics, ED2 uses a generalized version of the Land Ecosystem Atmosphere Feedback‐2 (LEAF 2) soil
moisture scheme (Walko et al., 2000), which has a multilayer soil column and is able to represent liquid
or frozen surface water both in and above the soil. Soil moisture movement between soil layers is
governed by moisture potential gradient through Darcy's law. ED2 has been used to study a number of
terrestrial ecosystem processes including: the hydrometeorological effects of land conversion on
ecosystems (Knox et al., 2015), the response of Amazon ecosystems to climate and land‐use change
(Zhang et al., 2015), and to quantify resilience of the Amazon to climate change, (Levine et al., 2016).

In this study, we conducted model simulations at both site and regional scales. Site‐level simulations at the
seven flux tower sites used initial conditions and meteorological forcing specified from measurements: The
simulations were driven by observed site‐level meteorological data, used site‐level soil texture and depth
information, and the ecosystem composition and structure at each site was specified from ground inventory
measurements. In the regional‐level simulations, 13 PFTs (four hardwood trees, five conifer trees, C3 and C4

grasses, and C3 and C4 crops) were used to represent the plants across the seven study regions. The list of
PFTs used in the simulations and their representative plants species are listed in Table 2. The western hard-
wood, western pine, fir, and dryland C4 grass, and dryland C3 grass PFTs are the new PFTs implemented in
the ED2 model and were parameterized in this study. To obtain the optimized ecophysiological and life‐
history parameters for the five new PFTs in the ED2 model, we applied the standard Markov chain Monte
Carlo (MCMC) method (Gelman & Rubin, 1992) to approximate the posterior distributions of these para-
meters. The final parameter values are set as the means of their posterior distributions. The MCMC method
was applied to derive the posterior parameter values of western hardwood and dryland C3 grass, western pine
and fir, and dryland C4 grass through site‐level MCMC simulations at the USTon, USMe2, and USWkg sites,
respectively. The data constrains include hourly, monthly, and yearly net ecosystem exchange (NEE; both
daytime and nighttime), heat fluxes (latent and sensible heats), and site‐specific multilayer soil water con-
tents from tower measurements, changes in basal area from tower ground census, and daily LAIs from the
Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 record (Yan et al., 2016). The meth-
ods used to derive initial conditions for the regional simulations are described in section 2.5.

The simulations for each region were conducted on a 30 arc‐second (about 1 km) grid resolution. This reso-
lution was chosen to achieve a balance between high spatial resolution and manageable model computa-
tional load. For spatial consistency, the vertical soil profile in each pixel was represented as a series of
stacked layers with the following thicknesses: 0–2, 2–8, 8–20, 20–40, 40–80, 80–160, 160–300, 300–500, and
500–800 cm. The number of soil layers present within a given grid cell was determined by the depth data

Table 2
Plant Functional Types (PFTs) Implemented in the ED2 Model Analysis Used in This Study, and Representative Plant Species

PFTs Representative species

Northern pine Pinus resinosa and Pinus strobus
Southern pine Pinus taeda, Pinus strobiformis, and Pinus palustris
Later‐successional conifer Thuja occidentalis, Picea rubens, Picea glauca, Tsuga canadensis, and Abies balsamea
Early‐successional hardwood Betula papyrifera, Betula populifolia, Betula lenta, and Prunus spp.
Middle‐successional hardwood Quercus rubra, Quercus velutina, Acer rubrum, Fraxinus americana, and Sorbus americana
Late‐successional hardwood Acer saccharum, Fagus grandifolia, Betula alleghaniensis
C3 crop Triticum astivum, Triticum militinae, Triticum monococcum, Triticum spelta, Glycine max
C4 crop Zea mays, Sorghum bicolor
Western hardwood Quercus kelloggii, Quercus engelmannii, Quercus agrifolia, Quercus lobata
Western pine Pinus ponderosa, Pinus monticola, Pinus edulis, Sequoiadendron giganteum
Fir Abies amabilis, Abies concolor, Abies magnifica, Abies grandis, and Pseudotsuga menziesii
Dryland C4 grass Erograstis lehmanniana, Bouteloua spp., and Sorghum halepense
Dryland C3 grass Brachypodium distachyon, Hypochaeris glabra, and Trifolium hirtum
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from the measurement‐based soils data set (see section 3). The biogeophysical and biogeochemical processes
were solved using a fourth‐order Runge‐Kutta integration scheme with an integration time step of 600 s with
hourly outputs of the relevant state variables and fluxes.

2.3. AirMOSS L2/3 RZSM and its Incorporation into ED2

The NASA AirMOSS mission used an airborne ultra‐high frequency P‐band SAR onboard a Gulfstream‐III
aircraft to measure RZSM (Chapin et al., 2012; https://airmoss.jpl.nasa.gov/). In contrast to previous
remote‐sensing estimates of soil moisture, the AirMOSS P‐band SAR has the capability to penetrate through
vegetation canopies down to soil depths of approximately 1.2 m, the extent of the penetration varying
depending on soil wetness, soil type, and vegetation type (Chapin et al., 2012; Tabatabaeenejad et al.,
2015). Two algorithms were used to estimate RZSM from the raw radar backscatter measurements: A numer-
ical radar scattering model was used to estimate RZSM from the P‐band SAR data over the shrubland, spar-
sely vegetated regions, and locations where the land cover has a predominance of a single woody species
(Tonzi Ranch, Walnut Gulch, MOISST, and Metolius; Tabatabaeenejad et al., 2015), while a simplified
3‐D model of forest canopy was used to estimate RZSM over the more compositionally‐diverse forested
regions of Howland, Harvard, and Duke (Truong‐Loi et al., 2015). In both cases, the vertical profile of soil
moisture was estimated using a second‐order polynomial representation of the profile. The AirMOSS
Level 2/3 RZSM data, hereafter referred to as L2/3 RZSM, provided vertically resolved estimates of RZSM
down to 100‐cm depth at a spatial resolution of 3 arc‐seconds https://doi.org/10.3334/ORNLDAAC/1418).
The 3 arc‐second measurements were then aggregated to 30 arc‐second ED2 simulation grids. The temporal
resolution of the RZSM data over each site is sufficiently high (all values taken within an interval of less than
1 hr), and thus each aggregated L2/3 RZSM data set essentially provides a snapshot of soil moisture over
each region.

The L2/3 RZSM measurements provide opportunistic snapshots of spatial patterns of RZSM, in which the
time intervals between successive snapshots range from a few days to several months. Since these observa-
tion intervals are larger than the typical response time of ED2 soil moisture, conventional data assimilation
approaches such as an ensemble Kalman filter will simply relax back to backgroundmodel predictions in the
lengthy interval between observations, thus negating the impact of the L2/3 RZSM assimilation (Walker &
Houser, 2004).

Accordingly, in this study, we developed a simple assimilation methodology to utilize the temporally
infrequent L2/3 RZSM (θL2/3) to correct the hourly ED2 RZSM predictions on each grid cell‐by‐cell basis
to produce a blended hourly RZSM series. First, a conventional ED2 simulation was run to produce
hourly multilayer (maximum nine layers) gridded predictions of ED2 RZSM (θED) across each region.
Second, for each grid cell, we then estimated the bias (ε) in the model's predictions by treating θL2/3
at the same soil layer as a more accurate estimate and computing ε as a difference between θED and
θL2/3 (i.e., ε = θED − θL2/3). The bias values for each grid cell were then linearly interpolated into hourly
values, which were then subtracted from θED to produce a bias‐reduced blended RZSM estimate that we
referred to as L2/3 RZSM‐B (Supporting Information, Figure S1). To ensure physical consistency, the
bias reduction method also took into account the physical bounds of maximum and minimum water
content of the soil (i.e., saturated soil water content and residual soil water content), which was calcu-
lated based on the soil type of each grid cell. Finally, we used the multilayer L2/3 RZSM‐B as prescribed
RZSM values for the ED2 model to rerun it to simulate the carbon fluxes.

2.4. Quantification of Carbon Flux Sensitivities to RZSM

Similar to the carbon sensitivity metric of Friedlingstein et al. (2006), we defined a set of sensitivity factors to
quantify the sensitivities of predicted carbon fluxes to variation in RZSM (θ, 0–100 cm):

βC ¼ CED θEDð Þ−CED θRZSMð Þ
θED−θRZSM

; (1)

where CED(θ) denotes a given carbon flux (gross primary productivity [GPP], autotrophic respiration [Ra],
heterotrophic respiration [Rh], ecosystem respiration [Reco], or net ecosystem exchange (NEE); θED is the
RZSM predicted by the ED2model; θRZSM is either observed RZSM or L2/3 RZSM‐B; CED(θED) is the original
modeled carbon flux and CED(θRZSM) is the carbon flux predicted by the model when the by RZSM values are
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either prescribedfrom observations or from the L2/3 RZSM‐B; and βC is the carbon flux sensitivity factor.
Essentially, the βC valuequantifies the predicted response of a given carbon flux to change in RZSM with
the magnitude of the change reflecting the difference between the predicted and estimated observed value
of RZSM: Higher absolute values of βC indicate higher sensitivity of the carbon fluxes to changes in RZSM
while the sign indicates the direction of the carbon flux (positive values indicating a flux to the atmosphere
and negative values indicating net carbon uptake by the ecosystem).

2.5. Model Initialization

The aboveground ecosystem composition is described in terms of initial abundances of individuals of differ-
ent sizes and different PFTs within the grid cells of each evaluation region. This ecosystem composition and
structure information was derived by combining information about the fractional coverage of bare ground,
grassland, croplands, and forest within each 30″ (~1 km) grid cell specified from the 30‐m NLCD data set
(Homer et al., 2015) with information about the size and abundances of the eight different tree PFTs specified
from forest inventory data from the U.S. Forest Service's Forest Inventory and Analysis (FIA) program
(McRoberts et al., 2005; Shaw, 2009). Specifically, the NLCD 2011 with a spatial resolution of 30 m
(Homer et al., 2015) was first used to calculate the fractional coverage of bare ground, grassland, croplands,
and forest/woodlands within each 30″ (~1 km) grid cell of the radar swath (Figure 1). In areas dominated by
grasslands and croplands, the abundances of the grass and crop PFTs were then calculated from the seasonal
maximum LAI derived from the 2002–2014 MODIS Collection 6 record (Yan et al., 2016) using ED2's defini-
tion of a PFT's ecophysiological properties and specific leaf area (Table S1). For the forested fraction of each
grid cell, the initial forest structure and composition was determined from the subplots of nearest three FIA
plots. The density of FIA plots can vary by region and state and can be ~3–6 plots per 10 km2 on average for
eastern and western areas and ~1.5 plots per 10 km2 in the midwest. While this procedure means that some
adjacent grid cells may have the same individual tree information and consequently the forested fractions of
such grid cells will have identical canopy structure and composition, the grid cells will differ in their forested
fractions. The most recent FIA census in the FIA's 1999–2011 data set were used to specify the fine‐scale spa-
tial heterogeneity in the structure and composition of the plant canopy following the methodology of
Medvigy and Moorcroft (2012) in which the FIA data are used to prescribe the diameters at breast height
(cm), and the species identity of each stem is assigned to the closest of the nine tree PFTs listed in Table 2.
The estimates of abundances for each PFT found in Table 1 were calculated from these aboveground ecosys-
tem composition estimates within each grid cell by calculating the percentage contribution of each PFT to
the total canopy LAI within each region.

The initial values of the soil organic carbon were extracted from FIA plot values of carbon in the litter pool
and carbon in the soil organic material, with values converted from tons per acre to kilograms per square
meter. Fast soil carbon and structural soil carbon in the ED2 model are extracted from the litter pool and soil
organic material pool, respectively. Because there is no data in the FIA database for the slow soil carbon pool,
initial slow soil carbon values were estimated from a simulation of themodel initialized with the FIA‐derived
ecosystem composition driven by recycling 2009–2014 North American Land Data Assimilation Version 2
(NLDAS‐2) meteorological forcings (Xia et al., 2012). For the regional simulations, the ED2 model was
started with the simulation in 2010 with the aforementioned initial conditions and driven by the 2009–
2014 NLDAS‐2 meteorological forcing.

In the site‐level simulations, the aboveground ecosystem composition is derived from censuses conducted at
the flux tower sites using the data from census that was conducted closest to 2010, the start of the simulation
period. The initial values of the soil organic carbon were extracted from the flux tower reported values. The
soil text, soil depth, and meteorological data were also derived by the ground measurements from the
AmeriFlux network (http://ameriflux.lbl.gov). Since USDk3 was terminated in 2008, the meteorological for-
cings at this site were specified from the NLDAS‐2 data set.

2.6. Model Evaluation

Themodel performance is evaluated using the following procedures. First, we compared the modeled RZSM,
AirMOSS L2/3 RZSM, and ground‐measured RZSM from the AirMOSS L2 hourly in‐ground soil moisture
observations (https://daac.ornl.gov/AIRMOSS/guides/AirMOSS_L2_Inground_Soil_Moist.html) in two soil
layers (0–10 and 10–40 cm) from 2012 to 2013 at the seven flux tower sites. Second, we compared the spatial
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patterns of the model and AirMOSS L2/3 RZSM across the seven evaluation regions. Furthermore, we eval-
uated the modeled carbon flux (C‐flux) sensitivities to RZSM by a comparison with their observation‐based
counterparts, which are derived from the tower measured C‐flux data from 2010 to 2014 provided by the
AmeriFlux network (http://ameriflux.lbl.gov) at six flux tower sites (USDk3 was terminated in 2008 and is
excluded from this analysis). Because there are no direct observations of the C‐flux sensitivities to RZSM
at the seven flower towers, we used the measurement‐based daily carbon fluxes from 2010 to 2014 from
six of the seven flux towers to derive measurement‐based C‐flux sensitivities. We then compared themodeled
C‐flux sensitivities to RZSM with the measurement‐derived values. Since Since no data was available from
experimental RZSM manipulations at the seven sites, we estimated the observed soil moisture sensitivities
by daily differencing carbon flux and soil moisture measurements from two consecutive days during which
meteorological conditions did not change substantially, defined by two conditions: (1) the absolute relative
difference of daily air temperature and daily incoming shortwave radiation between the two days are less
than or equal to 10%, and (2) absolute relative difference of daily precipitation between the 2 days are less
than or equal to 11 mm.

To measure the quality of model predictions, three statistical metrics were used: Pearson's correlation coeffi-
cient, root mean squared error (RMSE), and bias (model minus observation).

2.7. Attribution of Spatial Variability in Model RZSM Biases and C‐flux Sensitivities

We used a multiple linear regression analysis to investigate the relationships between the carbon flux sensi-
tivities and potential controlling factors, including aboveground biomass (AGB), LAI, soil carbon storage,
sand percentage, clay percentage, and PFT (the later as a categorical variable). We also applied an analysis
of variance (ANOVA) analysis to test the difference of the C‐flux sensitivities among PFTs. The multiple lin-
ear regression was conducted using the linear model function (lm), and the one‐way ANOVA analysis was
conducted using the pairwise t‐test function (pairwise.t.test), both in R 3.4.1 (https://www.r‐project.org).

In addition, sensitivity analyses of model RZSM and carbon fluxes (GPP, ecosystem respiration and NEE) on
soil texture (sand and clay percentages) at the seven flux tower sites were conducted to estimate the impacts
of uncertainty in soil texture data on the model estimates of RZSM and carbon fluxes.

3. Data
3.1. Soil Data

The soil physical and hydraulic properties were obtained from the gridded Soil Survey Geographic Database
(gSSURGO; https://websoilsurvey.nrcs.usda.gov/, access date: 2012) in conjunction with Rosetta, a compu-
ter program for estimating soil hydraulic parameters with hierarchical pedotransfer functions (http://www.
cals.arizona.edu/research/rosetta/index.html). The soil physical and hydraulic properties required by the
ED2 biosphere model include fractions of sand, clay and silt, soil class, soil stratification (soil layers and
depths), saturated soil water content (θs), and residual soil water content (θr). The lower soil boundary con-
dition is also derived from the SSURGO (Soil Survey Geographic Database) data set. In addition, the
SSURGO data set also provides the soil depth information, which is used to determine the number of soil
layers in each modeling grid cell.

3.2. Land Cover/Land Use and Phenology Data

The land cover/land use was specified from the NLCD 2011 data set with a spatial resolution of 30 m (https://
www.mrlc.gov/data/nlcd‐2011‐land‐cover‐conus). As described in section 2.5 above, these data, in combina-
tion with FIA measurements, were used to prescribe ecosystem structure and composition within each grid
cell. Phenology was determined from the MODIS Global Land Cover Dynamics (MCD12Q2) Version 6 data
product for the 2009–2014 period (https://e4ftl01.cr.usgs.gov/MOTA/MCD12Q2.006/; Ganguly et al., 2010),
which was used to determine the timing of leaf onset and offset for the deciduous tree PFTs in the
ED2 model.

3.3. Meteorological Forcing Data

The meteorological inputs were comprised of hourly time series of over‐canopy air temperature, downward
shortwave and longwave radiation, precipitation, specific humidity, wind velocities, and surface air pressure.
These data are obtained from the NLDAS‐2 (Xia et al., 2012) forcing data set. Because NLDAS‐2 has a coarser
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spatial resolution (1/8° × 1/8°) than the 30″ resolution of the regional simulation grids, bilinear interpolation
was applied to downscale the data set to the spatial resolution of the regional simulation grids. In addition,
atmospheric CO2 concentration was specified from the NOAA GLOBALVIEW product (https://www.esrl.
noaa.gov/gmd/ccgg/globalview).

4. Results
4.1. Evaluation of Soil Moisture Predictions and Blending Procedure

The ED2 RZSM predictions and AirMOSS‐derived L2/3 RZSM‐B estimates for 0–10 and 10–40 cm of soil
layers were compared to in‐situ soil moisture observations at the seven flux tower sites (Figure 2).
Comparing the model's RZSM predictions against the in‐situ observations shows that the native ED2 model
qualitatively captures inter‐daily and seasonal variability of observed RZSM between March 2012 and
August 2014 across the seven flux tower sites (mean Pearson's correlation coefficient, r = 0.59 ± 0.26 and
r = 0.70 ± 0.22 for the 0–10 and 10–40 cm of soil layers, respectively; sample sizes given by the value of nobs
in each panel of the figure, P < 0.001). ED2 RZSM performs best at Metolius (USMe2), Walnut Gulch
(USWkg), and the 0‐ to 10‐cm layer at Tonzi Ranch (USTon; Figure 2). The site‐level correlation coefficients
between ED2 RZSM and in situ observations at these three sites range from 0.75 to 0.88 (P < 0.001), with
root mean square (RMSEs) between ED2 RZSM and the observations between 0.03 and 0.09 m3/m3, and
biases (model minus observation) between −0.02 and 0.04 m3/m3 (see Table S2). The correlation
coefficients (r) between the model and observations for the 0–10 and 10–40 cm of layers at Duke Forest
and for the 10‐ to 40‐cm layer at Tonzi are also relatively high (r = 0.7, 0.73 and 0.88 respectively;
P < 0.001); however, the model exhibits a significant dry bias in its predictions for these layers (biases of
‐0.12, ‐0.14 and ‐0.18 respectively, seeTable S2). At Howland (USHo1), the model predictions correlate
moderately well with the observations in the upper soil layer and well in the 10‐40cm layer (r = 0.57 and
0.82, respectively; P < 0.001), but with significant wet biases (biases of 0.22 and 0.16 respectively, see
Table S2). At Harvard (USHa1), the model performs poorly in the 0‐ to 10‐cm soil layer (r = 0.2; P < 0.001),
performs well (r = 0.82; P < 0.001) in the 10‐ to 40‐cm soil layer, but has a significant dry bias in both
layers (Table S2). At the MOISST (USARM) site, the model performs poorly in both layers (r = 0.25 and
0.21 for the 0–10 and 10–40 cm of layers, respectively; P < 0.001), albeit with low overall bias
(0.03 and ‐0.008 respectively, see Table S2). Taken together, these results suggest that the ED2 model is gen-
erally able to capture inter‐daily and seasonal patterns of variability of RZSM across the seven sites that have
different climate, soil, and ecosystem composition; however, there are still significant, unaccounted for,
biases in the ED2 RZSM predictions at several of the sites.

Comparison of the ED2 RZSM predictions and L2/3 RZSM estimates to the ground observations across the
seven sites (see Figure 2 and Text S1) for times which all three estimates are available (i.e., times that coin-
cident with the red points in Figure 2) indicates that the L2/3 measurements are generally closer to the
ground observations than the ED2 predictions in both soil layers (correlation coefficients r = 0.64 and 0.67
for the L2/3 RZSM vs. r = 0.30 and 0.31 for the ED2 RZSM predictions in the 0–10 and 10–40 cm of soil layers,
respectively, sample size n2/3 = 101). The higher accuracy of the SAR‐retrieved RZSM estimates compared to
the native ED2 RZSM predictions justifies the incorporation of the L2/3 RZSM estimates into the ED2model.

Following the application of the soil moisture blending method (section 2.3 and Figure S1), the blended
RZSM predictions more closely align with both the spatially comprehensive, but temporally infrequent,
L2/3 RZSM data, and the temporally resolved, but spatially restricted, observations at most of the sites, pre-
serving the inter‐daily variability that cannot be provided by L2/3 RZSM (purple lines in Figure 2).
Compared to the native ED2 and L2/3 RZSM, the blended results L2/3 RZSM‐B have higher r values (0.69
and 0.72 for the results in the 0–10 and 10–40 cm of soil layers, sample size n2/3 = 101) and lower RMSDs
(0.081 and 0.067 for the results in the two soil layers) relative to the observations (Text S1 and Figure S2).
The site‐level correlation coefficients, RMSDs, and bias values of L2/3 RZSM‐B compared to the in situ obser-
vations (sample sizes given by the value of nobs in each panel of Figure 2) are given in Table S3. While simple,
this blending approach provided an effective way to continuously update and reduce the bias in the ED2 soil
moisture predictions using the infrequent L2/3 RZSM observations.

To further assess the effectiveness of the blending method, we also applied our interpolation and bias correc-
tion to the time points in the in situ soil moisture observations that correspond to the AirMOSS L2/3
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snapshots to produce a blended ED2 RZSM series for the flux tower sites. As illustrated in Figure S3, this time
series more closely matches the observational time series (RZSM biases decrease from −0.01 ± 0.10 to
0.00 ± 0.04 m3/m3 and RMSEs decrease from 0.10 ± 0.06 to 0.07 ± 0.03 m3/m3), confirming that the linear
blending method is effective in reducing the biases in the model's soil moisture predictions.

Both the native ED2‐RZSM and radar‐constrained L2/3 RZSM‐B show clear spatial gradients across the
seven regions (Figures 3a and 3b). Not surprisingly, eastern regions like Duke Forest and Howland Forest
have higher annual mean RZSM than the drier western regions like Walnut Gulch and MOISST (Figure 3b).

However, ED2 RZSM predictions are surprisingly low at Harvard Forest that also has a wet climate while the
radar‐constrained RZSM implies much higher RZSM in this region (compare Figures 3a and 3b). In addition,
the L2/3 RZSM‐B shows surprisingly high values in Howland (Figure 3b). Comparison of L2/3 RZSM and
L2/3 RZSM‐B against the ground observations at Howland (Figure 2) indicates that the AirMOSS L2/3
RZSM measurements (red points) used to produce the L2/3 RZSM‐B (purple line) are generally than the
ground measurements on the corresponding dates (Figure 2). The reason(s) for this large discrepancy
between AirMOSS‐derived estimates and ground‐based RZSM measurements at Howland is unclear: It
may due to error in AirMOSS RZSM retrieval algorithm and/or errors in the Howland ground‐based mea-
surements whose values are notably lower than the ground‐based measurements at the Harvard Forest,
another northeastern forest site. The radar‐constrained L2/3 RZSM‐B shows high values in Tonzi Ranch,
which has a relatively dry climate (Figure 3b). In part this reflects the fact that most of the Tonzi Ranch
flights occurred in the wet season as indicated by the red dots shown in Figure 2. Some of these high values
are confirmed by the corresponding ground observations at the USTon flux tower site (Figure 2).

As shown in Figure 3c, ED2's RZSM predictions are lower than L2/3 RZSM‐B in 86.9% of the combined area
of the seven study regions, implying that the ED2model has a general tendency to underestimate RZSM rela-
tive to both the in‐situ observations and SAR‐retrieved RZSM estimates. Exceptions include a western por-
tion of Metolius and a northern portion of MOISST that have a wet biases (Figure 3c). The region with the
smallest overall bias is Metolius with a near‐zero regional average bias (0.003 m3/m3; Figure 3c), while the
regional largest biases are at the two northeastern forest regions (Howland and Harvard) with regional aver-
age biases of 0.21 and 0.19 m3/m3, respectively (Figure 3c). The distribution of mean biases (relative to
AirMOSS L2/3 RZSM) over the AirMOSS observing period (September 2012 to August 2014) in three soil
layers (0–10, 10–40, and 40–100 cm) in the ED2 model across the study regions confirms the above

Figure 2. Comparison of daily soil water content (θ in units of m3/m3) predicted by ED2 terrestrial biosphere model (green lines) against in situ ground‐based mea-
surements (black lines) and AirMOSS L2/3 measurements (red dots) at the seven flux tower sites. Panel (a) the 0‐ to 10‐cm soil layer and panel (b) the 10‐ to 40‐cm
soil layer. The magenta lines in each panel show the blended L2/3 RZSM‐B time series produced by the bias reduction procedure described in section 2.3. The
number of records for the in situ observations and AirMOSS L2/3 measurements are also shown in the figure.
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findings: In all regions except for Metolius, the average regional soil moisture biases are generally negative
ranging from 0.05 to −0.22 m3/m3 (see Figure 3c, Text S2, and Figure S4). There is also a trend towards
increasing levels of bias in deeper soil layers (Figure S4) suggesting that ED2 RZSM dry bias may be
primarily caused by excessive drainage rather than excessive evapotranspiration.

The model's dry‐bias tendency is also apparent in the simulations at five of seven flux tower sites, the two
exceptions being the Howland (USHo1) and Metolius (USMe2) flux towers (Figure 2). A multiple linear
regression of spatial RZSM biases on the potential controlling factors suggest that the RZSM biases covary
significantly with soil texture (sand and clay percentage), as well as with AGB and PFTs, but not with LAI
(Table S4), a pattern that is also consistent with idea that the model's dry bias is caused by moisture drainage
occurring too quickly within the model's the soil column.

4.2. Comparison of Spatiotemporal Patterns of Carbon Fluxes from Native ED2 Simulations and
ED2 L2/3 RZSM‐B Simulations

Figure 4a shows the spatial patterns of annual GPP in the seven regions predicted by the original ED2 simu-
lations (i.e. native rather than bias‐corrected soil moisture). Harvard Forest, Howland Forest, Duke Forest,
and western Metolius have higher GPP values, with respective regional means of 1.09, 1.33, 1.14, and
1.23 kg·cm−2·year−1, than the other regions (eastern Metolius, Tonzi Ranch, MOISST, and Walnut
Gulch), with regional means of 0.31, 0.27, 0.23, and 0.06 kg·cm−2·year−1, respectively (Figure 4a).
Compared to the original ED2 predictions, GPP in the ED2 + L2/3 RZSM‐B (i.e. with bias corrected soil
moisture) is generally higher in all the evaluation regions except for Metolius (compare Figures 4a and
4b). Regional average annual GPP values for Harvard Forest, Howland Forest, Duke Forest, Metolius,
Tonzi Ranch, MOISST, and Walnut Gulch are, respectively, 1.89, 1.50, 2.15, 1.01, 0.27, 0.27, and
0.47 kg·cm−2·year−1, that is, the RZSM correction alters annual GPP by 73.4%, 13.5%, 88.5%, −28.3%, 3.7%,
17.4%, and 683% in the seven regions. As would be expected given the general dry bias in the native ED2
model, the differences in GPP are almost all positive: he only exception is at Metolius where ED2 + L2/3

Figure 3. Panels a and b: spatial patterns of mean RZSM (θ in units of m3/m3) during the AirMOSS observation period (September 2012 to August 2014) in the 0‐ to
100‐cm soil layers in the seven evaluation areas for (a) original ED2 simulations corresponding to the AirMOSS flights; (b) the AirMOSS L2/3 data. Panel (c):
estimated mean biases in the model's predictions (ED2 minus L2/3 RZSM‐B). The number of AirMOSS snapshots during the 2012–2014 observation period are: 21,
15, 15, 9, 14, 10, and 17 for Howland, Harvard, Duke, Tonzi, Metolius, Walnut, and MOISST, respectively.
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RZSM‐B's GPP is lower in some regions of eastern and central Metolius (compare Figures 4a and 4b) where
original ED2 RZSM had a wet bias (see Figure 3c). As might be expected given the large dry biases between
original ED2 RZSM and L2/3 RZSM‐B seen at Harvard and Howland (see Figure 3c), the increases in GPP at
both these sites are relatively large; however, large changes also occurred at Duke Forest and Walnut Gulch
(Figure 4, compare panels a and b) where the magnitude of the dry biases were lower.

RZSM correction also causes changes in ecosystem respiration. At Harvard Forest and Howland Forest,
where the RZSM biases in the ED2 simulations were larger (Figure 3c), both Ra and Rh (Figures S5 and
S6) increase significantly once the RZSM moisture biases are reduced. The impacts of RZSM corrections
on Ra ranged in magnitude from 0.05 to 0.30 kg·cm−2·year−1 and, not surprisingly, are strongly correlated
with the changes in GPP (compare Figures S5 and 4). The responses of Rh to soil moisture corrections were
generally larger than those of Ra, ranging from 0.60 to 0.84 kg·cm−2·year−1. Although the RZSM bias at Duke
Forest was smaller than at Harvard Forest and Howland Forest (Figure 3c), the changes in Ra and Rh at Duke
Forest resulting from RZSM correction were both large (Figures S5 and S6). For the regions with smaller
biases in modeled RZSM (Tonzi, MOISST, and Walnut), RZSM bias reduction has modest impacts on the
two respiration terms: Changes of annual values are within ±0.100 kg·cm−2·year−1 (Figures S5 and S6).

Since NEE is the difference between ecosystem respiration and GPP, the effects of soil moisture on NEE
depend on the relative magnitudes and directions of how soil moisture affects ecosystem respiration and
GPP. As seen in Figures S5 and S6, across the Howland Forest and Harvard Forest evaluation regions, the

Figure 4. Maps of annual GPP in the seven regions: the results from original ED2 simulations (a) and ED2 simulations driven by L2/3 RZSM‐B (b).
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correction of the general dry bias in RZSM ed to increases of Ra and Rh. Because the increases in GPP
arising from the moisture bias reduction (Figure 4) are smaller than the combined increases in Ra and
Rh following the moisture bias reduction (Figures S5 and S6), regional average NEE increases by
0.37–0.47 kg·cm−2·year−1 in these two regions (Figure 5). At Metolius, after correcting RZSM, annual
NEE across most of the region also increases (Figure 5); however, in this case the increased NEE is
largely due to reductions in GPP following bias reduction (Figure 4), as these areas have wet biases in
the model (Figure 3c). In contrast, NEE across the Duke Forest, Walnut Gulch, and MOISST regions
decrease (become more negative) following soil moisture correction (Figure 5), decreasing regional
average NEE by 0.04–0.31 kg·cm−2·year−1. At Tonzi, changes in annual NEE are minimal (Figure 5)
because the impacts of RZSM bias correction on GPP (Figure 4) and ecosystem respiration (Ra + Rh,
Figures S5 and S6) are small, and are of similar magnitude and thus approximately cancel each other out.

Figure 5. Maps of annual net ecosystem exchange (NEE) in the seven regions. (a) the results from native ED2 simulations; and (b) ED2 simulations incorporating
L2/3 RZSM‐B moisture product.
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4.3. Evaluation of Modeled Carbon Flux Sensitivities to Soil Moisture

The ED2 daily C‐flux sensitivities (βGPP, βEco, and βNEE) agree reasonably well with the observation‐based C‐
flux sensitivity estimates as indicated by high r values (r > 0.77, P < 0.001; Figure 6). The model's predictions
of βGPP match the observations better than its predictions of βEco and βNEE: the model explains 99% of the
variability in observation‐based βGPP estimates (Figure 6a), while its predictions of βEco and βNEE explain
60% and 68% of the observation‐based estimates, respectively (Figures 6b and 6c). While it is clear that there
are large day‐to‐day variabilities in both model‐ and observation‐based C‐flux sensitivities, as indicated by
the vertical and horizontal error bars in Figure 6, the signs and magnitudes of the model's predicted sensitiv-
ities align with the observation‐based site‐level means distributed along the 1:1 lines (Figure 6). However, the
ED2 model tends to underestimate the sensitivities of GPP and ecosystem respiration to RZSM (biases of
−14.89 ± 14.35 and −5.60 ± 15.76 g C/m3/day per m3/m3 for βGPP and βEco, respectively). Consequently,
the mean bias in ED2 βNEE tends to be overestimated (5.12 ± 18.75 g C/m3/day per m3/m3).

4.4. Spatial Patterns of Carbon Flux Sensitivities to Soil Moisture

To better understand the carbon cycle implications of spatial and temporal variation in soil moisture, we
used equation (1) to quantify the relative sensitivities of GPP, Ra, and Rh to changes in RZSM. As shown in
Figure 7, 95.5%, 90.9%, and 94.3% of the seven regions have positive values for βGPP, βRa, and βRh, respec-
tively, indicating that increased RZSM generally enhances vegetation productivity, autotrophic respiration,
and heterotrophic respiration.

The magnitudes of βGPP, βRa, and βRh exhibit large spatial variability between regions. βGPP and βRa are the
highest in Duke Forest and in most areas of Metolius; values are also high in the northwest and southeast
portions of Walnut Gulch, Harvard Forest, and central portions of Tonzi Ranch (Figures 7a and 7b). The low-
est values in absolute magnitude are found in northern Howland Forest and most areas of MOISST
(Figures 7a and 7b). It is also notable that there are also some areas with negative βGPP, βRa, and βRh values,
which are mainly located in the central portions of the Metolius and Walnut regions (Figures 7a–7c).
Regional average βGPP is higher in Duke Forest, Metolius, and Harvard Forest and lower values in Walnut
Gulch, Tonzi Ranch, MOISST, and Howland Forest (Table 3). Regional average values of βRa in the seven
regions range between 0.4 and 9.8 kg·cm−2·year−1·θ−1. In other words, a region‐wide increase of 0.01 m3/
m3 in RZSM (θ) across the seven regions can alter regional average vegetation productivity by 0.016–
0.19 kg·cm−2·year−1·θ−1 (i.e., 16–190 t C km−2·year−1) and regional average vegetation respiration by
0.004–0.098 kg·cm−2·year−1·θ−1 (i.e., 4–98 t C km−2·year−1). In contrast, βRh shows different spatial pattern
across the regions with the highest values in the eastern regions of Harvard Forest, Duke Forest, and
Howland Forest and lower values in the three western regions and the central regions (Figure 7c; Table 3).

Because NEE is a net difference between ecosystem respiration (Ra plus Rh) and GPP, the sign of its sensitiv-
ity to RZSM can be either positive or negative, depending on sign and magnitude of changes in ecosystem
respiration and GPP. In most areas of Harvard and Howland Forest, 42.9% of Tonzi Ranch, and 39.4% of
Walnut Gulch, βNEE is positive, indicating that increased RZSM leads to reduced carbon gain in these regions
(Figure 8). In contrast, βNEE is negative across most of the Duke, Metolius, and MOIST regions and over the

Figure 6. Comparison of the ED2 and tower observation‐based daily carbon flux sensitivities (βGPP, βEco, and βNEE, equation (1)) from 2010 to 2014 at the Harvard
(USHa1), Howland (USHo1), Metolius (USMe2), Tonzi (USTon), Walnut Gulch (USWkg), and MOISST (USARM) flux towers (a) βGPP, (b) βEco, and (c) βNEE;
closed circles indicate the sample means, while both horizontal and vertical bars denote the standard deviations of the samples.
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remaining portions of Tonzi Ranch and Walnut Gulch, indicating that increased RZSM in these areas
increases carbon storage (Figure 8).

4.5. Causes of Spatial Variation in Carbon Flux Sensitivities

To understand the underlying causes of the spatial variability in carbon flux sensitivities, we conducted a
multiple linear regression to relate the spatial values of carbon flux sensitivity with the corresponding spatial
values of AGB, LAI, soil carbon, soil texture, and dominant PFT type. The multiple linear regression results
show that, of the canopy structure and soil attribute metrics examined, the strongest determinants (as mea-
sured by the magnitude of the standardized regression coefficients, B, Table 4) of the GPP and autotrophic
respiration moisture sensitivities (βGPP and βRa) are canopy LAI and soil clay fraction (both positive effects,
i.e., increased sensitivity) and AGB (negative effect, i.e., reduced sensitivity). In contrast, the strongest deter-
minant of the heterotrophic moisture sensitivity (βRh) is soil carbon content (positive effect). The above
effects reflect themselves in the moisture sensitivity of βNEE, which varies positively with AGB (and to a les-
ser extent soil carbon), and negatively with LAI and clay fraction (Table 4).

The carbon flux sensitivity metrics also vary with canopy composition (Table 4). In particular, both βGPP and
βRa covary strongly and positively with mid‐successional hardwood, fir, southern pine, and western pine

Figure 7. Spatial patterns of yearly carbon flux sensitivities (βGPP, βRa, and βRh equation (1)) in the seven evaluation regions (a) βGPP, (b) βRa, and (c) βRh.

Table 3
Summary of Regional C‐flux Sensitivity Metrics and Their Spatial Variabilities (Standard Deviations).

Variables
Harvard
Forest

Howland
Forest

Duke
Forest Metolius

Walnut
Gulch

Tonzi
Ranch MOISSTRegions

βGPP (kg·cm−2·year−1·θ−1) 6.0 ± 3.4 1.6 ± 3.0 18.9 ± 35.9 12.7 ± 17.9 4.2 ± 36.7 4.1 ± 3.6 2.8 ± 3.0
βRa (kg·cm

−2·year−1·θ−1) 2.2 ± 1.2 0.4 ± 1.1 9.8 ± 19.4 4.1 ± 8.1 1.7 ± 14.3 2.1 ± 1.9 0.6 ± 1.2
βRh (kg·cm−2·year−1·θ−1) 5.7 ± 0.9 4.2 ± 1.5 4.2 ± 4.6 1.9 ± 2.8 0.2 ± 0.3 1.3 ± 1.3 0.2 ± 0.1
βNEE (kg·cm−2·year−1·θ−1) 2.0 ± 2.6 3.1 ± 1.9 −5.0 ± 13.3 −6.7 ± 12.1 −2.3 ± 22.3 −0.8 ± 2.6 −2.0 ± 1.9
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canopy fractions, and negatively with late conifer and late‐successional
hardwood canopy fractions. With respect to compositional influences on
heterotrophic respiration, βRh covaries strongly and positively with south-
ern pine, mid‐successional hardwood, late conifer, and late‐successional
hardwood canopy fractions and negatively with dryland C3 grass and fir
canopy fractions (Table 4). These composition effects reflect themselves
in the moisture sensitivity of βNEE (Table 4), which varies positively with
late conifer and late‐successional hardwood canopy fractions (reflecting
their negative effects on βGPP and positive effects on βRh) and negatively
with dryland C3 grass, fir, and western pine canopy fractions (reflecting
the positive effect of western pines and fir fractions on βGPP, and the nega-
tive effects of western pines fir, and dryland C3 grass fractions on βRh).

Some of these results relationships are intuitive: For example, LAI directly
affects canopy‐scale photosynthetic capacity and thus can directly impact
GPP. Similarly, clay fraction affects moisture drainage and thus directly
impacts soil hydrological processes implemented in the model, and soil
carbon determines the size of the belowground carbon pool available for
heterotrophic respiration. However, other effects, such as the negative
relationships between AGB and GPP and between AGB and Ra, and the
effects of PFT are less intuitive, likely reflecting indirect effects on the car-
bon flux sensitivities.

Many parameters governing photosynthesis and autotrophic respiration
vary between PFTs (Alton, 2011; Lawrence et al., 2011). In addition,
although heterotrophic respiration is not directly affected by PFT type,
the different PFTs have differential rates leaf turnover, root turnover,
and mortality that influence the supply of carbon for heterotrophic
respiration. The different PFTs also have different lignin to nitrogen ratios
and different rates of water uptake that can indirectly affect decomposi-
tion rates by influencing levels of soil moisture. Accordingly, we explored
whether the differential sensitivities of GPP, Ra, and Rh seen within and
between regions were linked to differences in PFT composition of
the ecosystem.

We investigated the differential ecological sensitivities of different PFTs to
RZSM through an ANOVA analysis and a comparison of the C‐flux sensi-
tivity distributions among different PFTs (Figure 9). As figure illustrates,
the different PFTs show different sensitivities to RZSM changes.
Southern pine, fir, and mid‐successional hardwood dominated ecosystems
exhibit the highest sensitivities of GPP and Ra to RZSM, followed by dry-
land C3 grass, western pine, and dryland C4 grass‐dominated ecosystems,

while ecosystems dominated by late conifer, C3 crop, early‐successional hardwood, western hardwood, and
late‐successional hardwoods exhibit the lowest sensitivities (Figure 9a). βRa shows similar patterns of
sensitivity (Figure 9b).

Regarding the sensitivity of soil decomposition (Rh) to RZSM, mid‐successional hardwood, southern pine,
late conifer, and late‐successional hardwood ecosystems show the highest sensitivities, followed by western
pine, fir, western hardwood, and dryland C3 grass, while early‐successional hardwood ecosystems, dryland
C4 grass, and C3 crop exhibit the lowest sensitivities (Figure 9c). Further discussion of these patterns, along
with an analysis of the seasonal patterns of carbon flux sensitivities, can be found in Text S3.

These differences in carbon sensitivities explain the spatial patterns of βGPP, βRa, βRh, and βNEE seen in
Figures 7 and 8. The Duke Forest region is mainly composed of middle‐successional hardwoods and south-
ern pines; the Harvard Forest region is largely composed of middle‐successional hardwoods; the dominant
PFTs in the Metolius region are fir and western pines (Table 1). All of the above PFTs show high

Figure 8. Spatial patterns of the sensitivity of yearly net ecosystem exchange
(NEE) to variation in soil moisture (βNEE, equation (1)).
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sensitivities of GPP and Ra to increased RZSM, indicated by the generally high βGPP and βRa values across
these regions. In contrast, the Howland Forest region is dominated by late‐successional conifer
ecosystems, and the MOISST region is mainly composed of C3 crop and dryland C4 grass ecosystems
(Table 1). As seen in Figures 9a and 9b, the late‐successional conifer, C3 crop, and dryland C4 grass
dominated ecosystems have relatively low sensitivities of GPP and Ra to increases in soil moisture, which
explains the lower βGPP and βRa values found across the Howland Forest and MOISST regions (Figure 7).
Similarly, the high sensitivity of heterotrophic respiration (Rh) to increases in soil moisture in mid‐
successional hardwood and late‐successional conifer dominated ecosystems (Figure 9c) explains the high
values of βRh found across the Harvard Forest and Howland Forest regions (Figure 7).

Soil texture is another potentially important factor underlying the spatial variation in carbon flux sensitiv-
ities. We investigated this by examining the sensitivities of modeled RZSM (0–100 cm), GPP, Reco, and
NEE to soil texture at the seven flux tower sites. The results for the Harvard Forest flux tower (USHa1) site
show how RZSM increases with increasing clay percentage and decreases with increasing sand percentage
(Figure 10a). Similar patterns are seen the other six sites (Figure S7). GPP has the opposite response to
increasing clay percentage and increasing sand percentage (compare Figures 10a and 10b). The effects of soil
texture on GPP at the other six sites are also generally similar to those seen at the Harvard Flux tower
(Figure S8). In contrast, Reco generally increases as sand percentage rises while the relationship between
Reco and clay percentage is a non‐monotonic, U‐shaped function (Figures 10c and S9).

These effects of soil texture on GPP and Reco give rise to the following relationships between NEE and soil
texture. At all sites, NEE declines with increasing sand content, but the degree of sensitivity varies:
Harvard exhibits high sensitivity to changes in sand percentage (Figure 10d), as do the Howland, Tonzi,
Metolius, and MOIST flux tower sites (Figure S10a,c,d,f, respectively), while the Duke and Walnut Gulch
flux tower sites exhibit low sensitivity to changes in sand content (Figure S10b,e, respectively). With respect
to clay content, NEE generally increases with increasing clay content with a similar pattern of sensitivity to
that seen for sand, that is, high sensitivity at Harvard (Figure 10d), and similarly at Howland, Tonzi,
Metolius, and MOIST (Figure S10a,c,d, f, respectively), and low sensitivities at the Duke and Walnut
Gulch flux tower sites.

Table 4
Summary of the Multiple Linear Regression Analyses of the Four Annual C‐flux Sensitivity Metrics on AGB, LAI, Soil Carbon Storage, Sand Percentage, Clay
Percentage, and Plant Functional Type (A Categorical Variable with C3 Crop as Default Type) Across the Study Regions

Carbon flux sensitivity

βGPP βRa βRh βNEE

Explanatory variables B P Sig. B P Sig. B P Sig. B P Sig.

(Constant) −0.51 <0.001 ***
−0.63 <0.001 ***

−0.78 <0.001 ***
−0.04 <0.001 ***

Canopy structure
AGB −0.52 <0.001 ***

−0.61 <0.001 *** 0.02 0.25 n.s. 0.41 <0.001 ***

LAI 0.38 <0.001 *** 0.46 <0.001 *** 0.11 <0.001 ***
−0.21 <0.001 ***

Soil attributes
Soil carbon 0.15 <0.001 *** 0.15 <0.001 *** 0.46 <0.001 *** 0.10 <0.001 ***

Sand percentage 0.17 <0.001 *** 0.15 <0.001 *** 0.06 <0.001 ***
−0.16 <0.001 ***

Clay percentage 0.50 <0.001 *** 0.48 <0.001 ***
−0.04 <0.001 ***

−0.51 <0.001 ***

Plant functional types
Dryland C3 grass 0.27 <0.001 *** 0.13 <0.03 *

−0.88 <0.001 ***
−0.51 <0.001 ***

Dryland C4 grass 0.20 <0.001 *** 0.30 <0.001 *** 0.13 <0.001 ***
−0.02 0.50 n.s.

Early Hardwood 0.07 0.31 n.s. 0.17 <0.001 ** 0.20 <0.001 *** 0.14 0.01 *

Fir 1.18 <0.001 *** 1.05 <0.001 ***
−0.70 <0.001 ***

−1.62 <0.001 ***

Late conifer −0.28 <0.001 ***
−0.12 0.01 * 0.53 <0.001 *** 0.68 <0.001 ***

Late hardwood −0.28 <0.001 ***
−0.16 0.03 * 0.43 <0.001 *** 0.61 <0.001 ***

Middle hardwood 1.02 <0.001 *** 1.16 <0.001 *** 1.32 <0.001 ***
−0.15 <0.001 ***

Southern pine 0.78 <0.001 *** 0.84 <0.001 *** 1.40 <0.001 *** 0.04 0.54 n.s.
Western hardwood 0.38 <0.01 ** 0.63 <0.001 ***

−0.26 0.02 *
−0.25 0.05 *

Western pine 0.64 <0.001 *** 0.75 <0.001 ***
−0.27 <0.001 ***

−0.64 <0.001 ***

Note. Regression coefficients (B) are standardized.
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5. Discussion

In this study, we used newly available radar‐derived estimates of RZSM
across seven representative regions in North America to (1) evaluate the
accuracy of terrestrial biosphere model predictions of soil moisture
dynamics and to (2) quantify the sensitivity of terrestrial carbon fluxes to
spatial and temporal variation in soil moisture. To our knowledge, this
is the first study to systematically assess the accuracy of terrestrial bio-
sphere model predictions of spatio‐temporal variability in RZSM and its
impact on terrestrial carbon fluxes across the major biomes of North
America. The results have several important implications for earth system
modeling, terrestrial ecology, and hydrology communities.

5.1. Importance of Regional High‐Quality Soil Data and
Pedotransfer Functions

In site‐level simulations driven by observed soil information and meteor-
ological forcing, overall negative biases appear in predictions of RZSM at
four out of seven sites (Figure 2). A similar result was found in the regional
simulations: RZSM via the ED2 biosphere model also had an overall dry
bias of −0.07 m3/m3 (Figures 3 and S4). The highest levels of bias were
in the northeastern temperate broad‐leaved and mixed forest biomes,
where the average levels of bias in these two regions were 0.19 and
0.21 m3/m3, respectively.

The dry bias in ED2 model's soil moisture predictions likely reflects errors
in the model's soil hydrology formulation. Our sensitivity analyses clearly
demonstrate that the hydrological and carbon dynamics implemented in
the ED2 model are sensitive to soil texture and associated soil physical
parameters (see Table 4, Figures 10 and S7–S10). As in many terrestrial
biosphere and land‐surface models, ED2 uses a Richards equation formu-
lation (Richards, 1931). The key parameters of this formulation are the
hydraulic conductivity function K(θ), which determines the rate of vertical
movement of moisture in the soil as a function of its wetness (θ), and the
saturated and residual soil water contents (θs and θmin), which respec-
tively determine the upper and lower physical bounds of soil water con-

tent. Like many terrestrial biosphere and land surface models, in ED2 these soil parameters are calculated
using the Clapp andHornberger (1978) pedotransfer functions, which specify the values for these parameters
based on the percentages of sand, clay, and silt in the soil.

The calibration and parameterization of pedotransfer functions largely depend on the size and representa-
tiveness of training samples (Borgesen et al., 2008) and sample dimension (Ghanbarian et al., 2017), making
it hard to develop universally‐applicable pedotransfer functions for all biomes investigated in this study. An
important next step will be to evaluate alternate pedotransfer functions such as the Van Genuchten (1980)
soil hydraulic functions. Analysis has shown that the Van Genuchten (1980) pedotransfer functions are more
accurate than Clapp and Hornberger (1978) pedotransfer functions (Shao & Irannejad 1999). More recently,
some researchers (Nemes et al., 2006; Patil & Chaturvedi, 2012) have advocated the use of non‐parametric
nearest‐neighbor models as an alternative to conventional parametric formulations such as Clapp and
Hornberger (1978) and Van Genuchten (1980), and the development of an improved set of pedotransfer func-
tions (Patil & Singh, 2016). It may also be necessary to incorporate region‐specific values for soil properties,
which can be determined from advanced statistical or intelligence techniques (Merdun, 2010), rather than
applying a universal parametric pedotransfer function.

Uncertainty in soil texture measurements can also introduce errors into soil moisture simulations. Although
gSSURGO is arguably the best available soil database across the United States (Zhong&Xu, 2011) the accuracy
of this database varies across regions and depends on the spatial scale over which it is implemented (Drohan
et al., 2003; Mednick, 2010). A cross‐validation of the gSSURGO data set by Ramcharan et al. (2018)

Figure 9. Boxplots of yearly carbon flux sensitivities, (a) βGPP, (b) βRa, (c)
βRh, and (d) βNEE, across dominant plant functional types; the means of
the boxplots with the same letters are not significantly different (ANOVA
test, P > 0.001).
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showed that RMSE for percent sand and clay are about 17.8% and 12%, respectively. For example, according
to our sensitivity analyses (Figures 10a and S7), this level of uncertainty in percent sand (clay) would
introduce 8 ± 2% (9 ± 14%) uncertainty in the ED2 regional RZSM. In the regional model simulations,
errors in RZSM may also reflect errors in the NLDAS meteorological forcing data set (Nearing et al.,
2016; Xia et al., 2016). However, errors in climatological forcing are unlikely to be the primary cause of
the inaccuracies in RZSM prediction because, as seen in Figure 2, errors of similar magnitude to those
seen in the regional simulations also arose in the simulations at the flux tower sites that used observed
meteorological forcing data.

Our intercomparison of ED2, AirMOSS L2/3, and L2/3 blended RZSM show that the RMSE of
AirMOSS L2/3 is about 0.08–0.099 m3/m3 (Figures 2 and S2), which is consistent with the result of a
previous study (Tabatabaeenejad et al., 2015). These errors in the AirMOSS L2/3 data set in turn affect
the blended RZSM (Figure 2). Although our simple RZSM blending method utilizes the radar‐based
AirMOSS L2/3 product to improve the predictions of RZSM, the algorithm does not explicitly consider
the uncertainty and error in the data source (i.e., the AirMOSS L2/3 RZSM in this study). An important
avenue for future studies will be to propagate the error and uncertainty from the AirMOSS data into
the model's soil moisture state variables and examine its consequences for resulting carbon fluxes
and carbon flux sensitivities. In particular, the penetration depth of the P‐band SAR instrument varies
across landscapes and depends on soil wetness, soil type, and vegetation type. As noted by
Tabatabaeenejad et al. (2015), these uncertainties introduce error in the SAR‐based RZSM estimates
for the 0‐ to 100‐cm soil layer. Further studies on the spatial variability of penetration depth of the
P‐band SAR will be important for further improving the accuracy of RZSM measurements.

In addition, the current aircraft platform of the P‐band SAR instrument means that the frequency of the
AirMOSS RZSM measurements is relatively low, providing measurements only a few times per year.

Figure 10. Sensitivities of ED2 (a) soil water content (0–100 cm), (b) GPP, (c) ecosystem respiration, and (d) NEE to sand
and clay fractions at the Harvard Forest (USHa1) flux tower site under the average climatic condition between 2010 and
2014; all values are normalized by the modeled value with sand percentage = 10% and clay percentage = 10%.
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Consequently, as seen in Figure 2, the accuracy of the blended RZSM estimates vary significantly as function
of time since the last RZSMmeasurement. An important future step will be to examine the trade‐off between
temporal revisit frequency and spatial resolution of RZSMmeasurements that could be obtained from a satel-
lite deployment of the P‐band SAR instrument to constrain and improve terrestrial biosphere model predic-
tions of soil moisture and resulting carbon fluxes.

5.2. Impacts of Soil Moisture on Terrestrial Carbon Fluxes

Our analysis shows that uncertainty and inaccuracies in RZSM can have large impacts on the estimates of
terrestrial carbon fluxes (Figures 4, 5, S5, and S6). A change in RZSM by 0.01 m3/m3 can lead to changes
in GPP, Ra, and Rh across the major biomes in North America by 0.016–0.189, 0.004–0.098, and 0.002–
0.057 kg·cm−2·year−1·θ−1, respectively. The response of NEE to change of RZSM is more complicated since
it depends on the relative impacts of soil moisture on GPP, Ra, and Rh (ranging between −6.99 and
3.11 kg·cm−2·year−1·θ−1). As the positive βNEE values indicate, the analysis shows that increases in soil
moisture do not necessarily increase net carbon storage: For example, increases in RZSM in most areas of
Harvard and Howland Forest regions decrease net carbon storage (i.e., increased NEE) by 2.0 and
3.1 kg·cm−2·year−1·θ−1, respectively (Figure 8) because increased RZSM (ΔRZSM) induced increases of eco-
system respiration are considerably larger than ΔRZSM‐induced increases in GPP (Figures 7 and 8) in these
two areas. This is likely because the low RZSM values predicted across the Harvard and Howland Forest
regions (Figure 3a) inhibit ecosystem respiration in these regions. When the dry biases in RZSM are cor-
rected, it causes marked increases in ecosystem respiration. In contrast, increases of RZSM in most areas
of the other five regions increased estimates of net carbon storage with values ranging between −6.69 and
−0.76 kg·cm−2·year−1·θ−1 (Figure 8).

Errors in modeled RZSM impact not only estimates of carbon fluxes but also estimates of water and energy
fluxes. Previous studies through site‐level observations and modeling have shown that hydrological pro-
cesses and surface energy partitioning are strongly sensitive to RZSM (Berg et al., 2014; Crow & Ryu,
2009; Gallego‐Elvira et al., 2016). Model parameters controlling the calculation of RZSM are critical for accu-
rate prediction of RZSM and corresponding carbon flux calculation. For example Dietze et al. (2014) con-
ducted a synthesis of carbon cycle uncertainties in the ED2 model using the Predictive Ecosystem
Analyzer eco‐informatics workflow. They found that uncertainty of water conductance parameter in the
ED2 model was generally high across PFTs due to a lack of direct measurements and suggested that adding
even small amounts of data constraints is likely to be effective in reducing this predictive uncertainty. Since
carbon, water, and energy fluxes of ecosystems are inherently coupled, inaccuracies and uncertainties of
RZSM can also introduce significant error into the predictions of terrestrial water and energy fluxes
(Exbrayat et al., 2013; Falloon et al., 2011; Gallego‐Elvira et al., 2016).

ESMs Terrestrial biosphere models are often calibrated using past observations of carbon fluxes. However,
structural errors and uncertainty in soil parameterization can introduce considerable uncertainty for future
projections (Falloon et al., 2011) because future climate conditions are expected to be out of the current and
past norms. Improving the soil hydrology models and pedotransfer functions of ESMs and biosphere models
may not, by itself, improve accuracy in their carbon flux predictions. The interactions of between soil hydrol-
ogy, plant carbon fluxes, and soil decomposition mean that errors in hydrology tend to result in knock‐on
errors or distortions in other model components such as photosynthesis and surface energy schemes that
have been tuned (either intentionally or unintentionally) to compensate for errors in predicting
soil moisture.

Accumulation of errors in soil moisture dynamics and carbon fluxes is also likely to significantly impact
long‐term vegetation dynamics in terrestrial biosphere models. For example, in the ED2 model, soil moist-
ure is an important environmental variable controlling the phenology of drought‐deciduous PFTs. With
regard to long‐term dynamics, changes in soil moisture impact plant growth, mortality and reproduc-
tion through its impacts on plant productivity and respiration that affect these demographic processes
by influencing the plant's net carbon balance. Finally, while correcting soil moisture in the model can
improve near‐term predictions, improved long‐term predictions of future carbon and vegetation dynamics
(for example, in response to climate change) will require improvements in the underlying representation
of soil physics.
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5.3. Differential Sensitivities of North American Ecosystems to Variation in RZSM

Our results indicate that North American ecosystems dominated by different PFTs exhibit markedly differ-
ent responses and sensitivities to changes in RZSM (Figure 9): Middle‐successional hardwood, southern
pine, and fir‐dominated ecosystems generally show the large sensitivities to RZSM, grassland ecosystems
generally show intermediate sensitivities, while early hardwood and late conifer‐dominated ecosystems have
the lowest sensitivities to RZSM (Figure 9). The different carbon flux components of the same PFT show dif-
ferent sensitivities to RZSM. In particular, the Harvard Forest and Duke Forest regions (both dominated by
middle‐successional hardwoods, Table 1) and the Metolius region (dominated by fir and western pine,
Table 1) exhibit higher levels of carbon flux sensitivities than the other regions (Figures 7 and 8). These dif-
ferential sensitivities may reflect differences in underlying plant traits, which in the terrestrial biosphere
model are reflected in the parameter values of the PFTs. Many of these parameters are specified from plant
trait databases or previous field and experimental studies (Longo, 2014; Medvigy et al., 2009; Moorcroft et al.,
2001); however, other plant parameters, such as those determining aboveground and belowground carbon
allocation, are less well‐constrained introducing uncertainty in the estimated carbon sensitivities. The differ-
ences may also reflect correlated differences in climate regimes and soil hydraulic properties between the dif-
ferent ecosystem types. Likely correlated with the differing responses of carbon fluxes to variation in RZSM
are differing levels of ecosystem resilience to climate‐change introduced droughts. Ensuring that terrestrial
biosphere models can correctly capture the responses of North American ecosystems to changes in RZSM
is an important step to improving projections of how the composition and structure of terrestrial ecosystems
will change as a result of climate‐driven changes in moisture regimes. Accounting for divergent responses of
different ecosystems within ESMs and biosphere models is also critical for accurately modeling carbon cycles
(Frasson et al., 2015) and for projecting ecosystem responses and carbon‐climate feedbacks to future climate
change (Alton, 2011; Pendall et al., 2011; K Zhang et al., 2015).

6. Conclusions

In this study, newly‐available remote sensing derived measurements of RZSM were incorporated into a ter-
restrial biosphere model to investigate the significance of spatial and temporal variation in RZSM for predic-
tions of terrestrial carbon fluxes across themajor ecosystems of North America. The analysis indicates that (i)
the terrestrial biosphere model exhibits significant biases in its predictions of RZSM; and (ii) the responses of
terrestrial carbon fluxes to spatial and temporal variation in soil moisture exhibit complex patterns due to its
differential impacts on carbon uptake (gross primary productivity) and carbon losses (plant and soil respira-
tion). The results highlight the marked differences in the sensitivity of terrestrial carbon fluxes in different
ecosystems to changes in RZSM and the need for additional work to understand the underlying causes of
these ecosystem differences. Understanding how changes in soil moisture impact predictions of long‐term
as well as short‐term carbon fluxes also needs to be investigated.
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