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Agronomique, Kourou 97379, France24

14University of Arizona, Tucson, AZ, United States25

15Max-Planck-Institut für Biochemie, Jena, Germany26

16AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, 34000 France27

Key Points:28

• Airborne lidar can be used to inform degradation-driven changes in structure to29

vegetation models30

Corresponding author: Marcos Longo, mdplongo@gmail.com

–1–

This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1029/2020JG005677 

 
 
 
 

©2020 American Geophysical Union. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020JG005677&domain=pdf&date_stamp=2020-06-30


manuscript submitted to JGR: Biogeosciences

• Forest degradation typically depletes evapotranspiration and productivity and in-31

creases flammability32

• Extreme droughts reduce functional differences between degraded and intact trop-33

ical forests34
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Abstract35

Selective logging, fragmentation, and understory fires directly degrade forest structure36

and composition. However, studies addressing the effects of forest degradation on car-37

bon, water, and energy cycles are scarce. Here, we integrate field observations and high-38

resolution remote sensing from airborne lidar to provide realistic initial conditions to the39

Ecosystem Demography Model (ED–2.2) and investigate how disturbances from forest40

degradation affect gross primary production (GPP), evapotranspiration (ET), and sen-41

sible heat flux (H). We used forest structural information retrieved from airborne lidar42

samples (13, 500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipita-43

tion and degradation gradients in the Eastern Amazon as initial conditions to ED-2.244

model. Our results show that the magnitude and seasonality of fluxes were modulated45

by changes in forest structure caused by degradation. During the dry season and under46

typical conditions, severely degraded forests (biomass loss ≥ 66%) experienced water-47

stress with declines in ET (up to 34%) and GPP (up to 35%), and increases of H (up48

to 43%) and daily mean ground temperatures (up to 6.5◦C) relative to intact forests. In49

contrast, the relative impact of forest degradation on energy, water, and carbon cycles50

markedly diminishes under extreme, multi-year droughts, as a consequence of severe stress51

experienced by intact forests. Our results highlight that the water and energy cycles in52

the Amazon are not only driven by climate and deforestation, but also the past distur-53

bance and changes of forest structure from degradation, suggesting a much broader in-54

fluence of human land use activities on the tropical ecosystems.55

Plain Language Summary56

In the Amazon, timber extraction and forest fires ignited by people are the chief57

causes of damages that we call forest degradation. Degradation is as widespread as de-58

forestation, and changes how forests behave. Degraded forests may pump less water to59

the atmosphere and absorb less carbon dioxide from the atmosphere. To understand the60

differences in behavior between degraded and intact forests, we used high-resolution scan-61

ning laser data collected from aircraft flights over regions in the Amazon where we knew62

if and when forests were degraded. Then, we provided these data to a computer program63

that calculates the exchange of water and carbon between the forest and the atmosphere.64

We found that, during the dry season, degraded forests are 6.5◦C warmer, pump 1/3 less65

water (i.e., 400, 000 L ha−1 month−1), absorb 1/3 less carbon (i.e., 1 tonC ha−1 month−1),66
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and show higher fire risk than intact forests. To our surprise, when the Amazon is hit67

by severe droughts, intact forests start to behave like degraded forests, because all forests68

run out of water and become hot. Our results are important because they show that for-69

est degradation caused by people can have large impacts on dry-season climate and fa-70

vor more fire, especially during typical, non-drought years.71

1 Introduction72

Tropical forests account for 25–40% of total carbon stocks in terrestrial ecosystems73

(Sabine et al., 2004; Meister et al., 2012), but their maintenance and functioning have74

been weakened by climate and land-use change. As a result, tropical forests may shift75

to net sources of carbon to the atmosphere, with residence time of carbon in forests de-76

clining by 50% (Davidson et al., 2012; Grace et al., 2014; Lewis et al., 2015; Erb et al.,77

2016). Land use and land cover changes contribute to nearly 15% of total annual car-78

bon emissions (Harris et al., 2012; Friedlingstein et al., 2019). However, most studies as-79

sessing the effects of land use change on tropical forest stocks and fluxes have focused80

on the effects of deforestation (e.g., Harris et al., 2012; Achard et al., 2014). Logging,81

understory fires and forest fragmentation — collectively known as forest degradation (Hosonuma82

et al., 2012) — could play a comparable role in the forest’s energy, water, and carbon83

cycle and induce locally warmer and drier conditions that could be detrimental to their84

functioning (Grossiord et al., 2020; Sullivan et al., 2020), but these effects remain poorly85

quantified.86

Significant fractions of the remaining tropical forests are located within 1 km from87

the forest’s edge (Haddad et al., 2015; Lewis et al., 2015) and thus are probably degraded88

(Asner et al., 2006; Morton et al., 2013; Pütz et al., 2014; Tyukavina et al., 2016; Potapov89

et al., 2017). The area impacted by forest degradation in the Amazon each year is highly90

uncertain, but likely comparable to deforestation (Asner et al., 2006; Morton et al., 2013;91

Tyukavina et al., 2017). Total carbon losses attributable to degradation may be simi-92

lar or exceed deforestation-related losses in tropical forests (Berenguer et al., 2014; Pear-93

son et al., 2017; Baccini et al., 2017; Aragão et al., 2018; Erb et al., 2018), and degra-94

dation may even dominate the carbon losses in indigenous lands and protected areas (Walker95

et al., 2020). At the local scale, carbon stocks in degraded forests are extremely variable.96

Lightly disturbed forests (e.g., reduced-impact logging) store as much carbon as intact97

forests, while forests impacted by severe or multiple disturbances may lose a significant98
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fraction or nearly all of their original carbon stocks (Berenguer et al., 2014; Alamgir et99

al., 2016; Longo et al., 2016; Rappaport et al., 2018; Ferraz et al., 2018). Transitions be-100

tween lightly and heavily degraded forests may be non-linear and abrupt (Brando et al.,101

2014). Unquestionably, estimates of fluxes from forest degradation and regeneration are102

more uncertain than emissions from deforestation (Aragão et al., 2014; Morton, 2016;103

Bustamante et al., 2016), because their impacts on forests are more subtle than defor-104

estation and thus more difficult to detect and quantify with traditional remote sensing105

techniques.106

Selective logging and fires also modify the forest structure, composition and func-107

tioning. For example, selective logging in the tropics generally targets large trees (diam-108

eter at breast height, DBH ≥ 40–60 cm) from a few marketable species (e.g., Feldpausch109

et al., 2005; Blanc et al., 2009; Pinagé et al., 2019), but the other logging structures such110

as skid trails and log decks kill or damage mostly small trees (DBH < 20 cm) (Feldpausch111

et al., 2005). Likewise, fire mortality decreases with tree size and the bark thickness (e.g.,112

Brando et al., 2012; Pellegrini et al., 2016), although areas disturbed by recurrent fires113

also show significant losses of large trees (Barlow et al., 2003; Martins et al., 2012; Brando,114

Silvério, et al., 2019; Silvério et al., 2019). Consequently, degradation creates more open115

canopies and thinner understory (e.g., d’Oliveira et al., 2012; Pinagé et al., 2019; Silvério116

et al., 2019) and increased abundance of grasses and fast-growing, low wood-density tree117

species (Barlow et al., 2016; Both et al., 2019; Brando, Silvério, et al., 2019).118

Previous studies indicate an increase in dry-season length in parts of the Amazon119

where both deforestation and forest degradation are pervasive (e.g., Fu et al., 2013; Sena120

et al., 2018), and that the onset of the wet season is modulated by forest transpiration121

(J. S. Wright et al., 2017). Temperature and vapor pressure deficit (VPD), important122

drivers of evapotranspiration (ET), were found by Kapos (1989) to be significantly higher123

near forest edges. Likewise, Jucker et al. (2018) installed a network of micrometeorolog-124

ical measurements across a study area in Sabah, Malaysia, that included intact forests,125

a broad range of degraded forests and oil-palm plantations, and found that forest struc-126

ture, along with topographic features, explained most of the variance in understory tem-127

perature. Yet, only a few studies on experimental sites quantified the magnitude, sea-128

sonality, and interannual variability of water, and energy cycles in degraded forests. For129

example, S. D. Miller et al. (2011) analyzed the impact of reduced-impact, low-intensity130

selective logging in the Amazon using eddy covariance towers and found only minor im-131
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pacts of logging on sensible and latent heat fluxes. Recently, Brando, Silvério, et al. (2019)132

compared eddy covariance data from two towers at an experimental fire site in the Ama-133

zon forest, and found declining differences in gross primary productivity and small dif-134

ferences in evapotranspiration between the control and burned area between 4 and 8 years135

after the last burn.136

Field inventory plots are fundamental to sample the structure and species compo-137

sition of tropical forests, but they also have important limitations to characterize the het-138

erogeneity of degraded landscapes. First, the number of plots required to characterize139

stands increase with heterogeneity, often reaching impractical numbers (Marvin et al.,140

2014). In addition, most tropical forest degradation occurs in private landholdings and141

privately managed logging concessions, where limited access by researchers may create142

sampling bias towards well-managed areas, which generally experience less intensive degra-143

dation. However, airborne laser scanning (airborne lidar) can circumvent these limita-144

tions over large areas with sub-meter resolution. Airborne lidar data have been used suc-145

cessfully to quantify structural characteristics of the canopy such as height and leaf area146

distribution (Hunter et al., 2013; Vincent et al., 2017; Shao et al., 2019). Moreover, these147

data have also been used to quantify changes in canopy structure and carbon stocks at148

local to regional scale that experienced multiple levels of degradation (e.g., Asner et al.,149

2010; Longo et al., 2016; Ferraz et al., 2018; Meyer et al., 2019).150

Numerical models can be used to understand the links between changes in forest151

structure, light and water availability for different local plant communities, and the over-152

all impact on energy, water, and carbon fluxes between forests and the atmosphere. In153

the past, big-leaf models have been modified to account for the long-term impacts of se-154

lectively logged tropical forests on the carbon cycle of tropical forests (e.g., Huang et al.,155

2008; Huang & Asner, 2010). However, big-leaf models generally do not represent the156

mechanisms that control access and availability of light and water in complex and het-157

erogeneous forest structures (D. Purves & Pacala, 2008; Fisher et al., 2018) (but see Braghiere158

et al., 2019). Individual-based models can represent the changes in the population struc-159

ture and micro-environments due to degradation (R. Fischer et al., 2016; Maréchaux &160

Chave, 2017), but the complexity and computational burden of these simulations often161

limit their application to single sites. Cohort-based models, such as the Ecosystem De-162

mography (ED-2.2) model (Medvigy et al., 2009; Longo, Knox, Medvigy, et al., 2019),163

strike a balance between these end-members because they can efficiently represent the164
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horizontal and vertical heterogeneity of forests. However, to represent the impact of het-165

erogeneity in the energy, water, and carbon cycles, it is critical that these models are in-166

formed with realistic initial conditions that capture the landscape variability and they167

accurately represent the complex interactions between climate and the micro-environment168

variability. Previous studies using a variety of cohort-based models have demonstrated169

that cohort-based models can realistically reproduce the micro-environment heterogene-170

ity and the long-term dynamics of ecosystems, compared to both individual-based mod-171

els (Moorcroft et al., 2001; Strigul et al., 2008) and observations (D. W. Purves et al.,172

2008; Longo, Knox, Levine, et al., 2019; Koven et al., 2019).173

In this study, we use airborne lidar data to quantify forest structure variability across174

the Amazon in order to provide critical initial conditions for ecosystem demography mod-175

els. We also investigate the role of forest degradation on the Amazon forest productiv-176

ity, flammability, as well as the degradation impacts on the water and energy cycles. Specif-177

ically, we seek to answer the following questions:178

1. What are the relationships between degradation metrics (e.g. biomass loss) and179

changes in carbon, water, and energy fluxes, and how does it vary across seasons180

and regions with different rainfall regimes?181

2. How do droughts affect the relationships between degradation and ecosystem func-182

tioning?183

3. Does forest degradation make Amazon forests more susceptible to fires? If so, which184

parts of the Amazon experience the largest flammability response to degradation?185

To this end, we integrate field inventory plots with high-resolution airborne lidar data186

over five study regions in the Eastern Amazon along a precipitation gradient and with187

a broad range of anthropogenic disturbance histories, to provide initial conditions to ED-188

2.2 that realistically represent the structural diversity of degraded forests. While lim-189

ited to specific regions in the Amazon where detailed degradation information exists, our190

goal is to provide a framework that can be extended to larger scales, including biome-191

and pantropical scales.192
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2 Materials and Methods193

2.1 Study regions194

We selected five study regions across a gradient of disturbance and climate con-195

ditions where ground and airborne lidar are available to study the forest function (Fig-196

ure 1; Table 1). Three of these sites include eddy covariance tower measurement of en-197

ergy, water, and carbon dioxide fluxes for comparison with the model simulations, and198

have been the focus of several ecological studies in the past. Additional details on the199

disturbance history of each region are available at Text S1.200

1. Paracou, French Guiana (GYF) is a field station where a logging experiment was201

conducted between 1987 and 1988 that includes intact forest controls and three202

selective logging treatments: timber extraction using conventional logging tech-203

niques, timber extraction and canopy thinning, and timber and fuelwood extrac-204

tion followed by canopy thinning (Gourlet-Fleury et al., 2004). The eddy covari-205

ance tower at the site is located in the undisturbed forest and has been operational206

since 2004 (Guyaflux; Bonal et al., 2008).207

2. Belterra, Brazil (BTE). Over the past 100 years, this region experienced cycles208

of economic growth and recession that created a complex landscapes dominated209

by deforestation, degradation and second-growth. The Tapajós National Forest210

is this region, and has areas of intact forests and selectively logged forests using211

reduced-impact techniques (VanWey et al., 2007; Pyle et al., 2008; Lei et al., 2018).212

An eddy covariance tower known as Km 67 overlaps with one of the surveyed sites213

and has data for 2001–2005, and 2008–2011 (Hayek et al., 2018).214

3. The Paragominas, Brazil (PRG) region used to be within the largest timber pro-215

duction area in Brazil and has undergone selective logging since the 1970s (Veŕıssimo216

et al., 1992). Since the 1990s, the economy has shifted towards agriculture, intro-217

ducing large-scale deforestation such that nearly half of the original forest cover218

has been lost, and most of the remaining areas have been logged (Pinto et al., 2009).219

4. Feliz Natal, Brazil (FZN) is located at the southern fringe of the Amazon in a mo-220

saic landscape of soybean fields, grazing lands, and logged forests. This region reg-221

ularly experiences severe dry seasons and frequent understory fires (Morton et al.,222

2013; Rappaport et al., 2018).223
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Figure 1. Location of the five study regions within the Amazon biome region, along with land

classification as of 2013. Intact forest and intact forest loss were obtained from Potapov et al.

(2017); open and deforested areas were obtained from PRODES-INPE (2018) (Brazil) and areas

with tree cover below 20% according to Hansen et al. (2013) (other countries); wetlands and wa-

ter bodies in the Amazon River Basin were from Hess et al. (2015) and savannas and mangroves

were obtained from Olson et al. (2001).

5. Tanguro, Brazil (TAN) is located in an experimental fire study area within a larger224

landscape covered by intact forests and forests that were disturbed with low-intensity225

understory fires (one, three, and six times) between 2004 and 2010 (Balch et al.,226

2008; Brando et al., 2014). The surveyed region also includes two eddy covariance227

towers that have been operating since 2014 both at the intact and burned forests228

(Brando, Silvério, et al., 2019).229

These five study regions were sampled at multiple sites by small-footprint, multiple-230

return airborne lidar. The lidar data provided both the terrain elevation at high spatial231

resolution (1-m) and detailed information about the vertical structure of forests from a232

uniform point cloud density to meet a minimum return density of 4 returns per m2 over233

99.5% of the area (Leitold et al., 2015). Living trees of diameter at breast height DBH ≥234

10 cm were either botanically identified (experimental plots in GYF) or identified from235

field characteristics by local parataxonomists. To characterize the disturbance history,236

–9–
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Table 1. Overview of the study regions, including mean annual precipitation (MAP) and

dry-season length (DSL).

Region (Code) Coordinates MAPa DSLb Lidar Inventory Disturbancesc

[mm] [mo] [ha] [ha]

Paracou (GYF) 5.28◦N; 52.91◦W 3040 2(0) 963 79.8 INT, CL1, LTH
Belterra (BTE) 3.09◦S; 54.95◦W 1890 5(1) 4057 16.7 INT, RIL, BN1, BN2, BN3
Paragominas (PRG) 3.15◦S; 47.61◦W 1850 6(2) 3217 35.6 INT, RIL, CL1, BN1, LB1, BN2, BN3
Feliz Natal (FZN) 12.14◦S; 54.68◦W 1940 5(4) 4210 14.0 INT, CL1, CL2, BN1, LB1, BN2, BN3
Tanguro (TAN) 13.08◦S; 52.41◦W 1800 5(4) 1006 22.9 INT, BN1, BN3, BN6

a Source for mean annual precipitation (MAP) data: GYF – Gourlet-Fleury et al. (2004); other regions – near-
est site available at INMET (2019).
b Dry-season length (DSL): number of months with precipitation below 100mm; numbers in parentheses indi-
cate number of severely dry months (precipitation below 30mm).
c Disturbance history classes: INT – intact; RIL – reduced-impact logging; CLx – conventional logging (x
times); LTH – conventional logging and thinning; LB1 – conventional logging and burned (once); BNx – burned
x times.

we used either published information from the experimental regions GYF (Gourlet-Fleury237

et al., 2004; Bonal et al., 2008; Wagner et al., 2013) and TAN (Brando et al., 2012, 2014),238

or the disturbance history analysis from (Longo et al., 2016), which was based on a vi-239

sual interpretation of the Normalized Burn Ratio (NBR) of cloud-free Landsat images240

since 1984, and complemented with information from logging companies for the reduced-241

impact logging sites (e.g., Pinagé et al., 2019). Details on site-specific data used in this242

study are available in Text S2 and previous work (Longo et al., 2016; Vincent et al., 2017;243

Brando, Silvério, et al., 2019), and were obtained through the Paracou Experimental Sta-244

tion and the Sustainable Landscapes Brazil data servers (Paracou Portal, 2016; Sustain-245

able Landscapes Brazil, 2019; dos-Santos et al., 2019).246

2.2 Overview of the modeling framework247

In this study, we used the Ecosystem Demography model, version 2.2 (ED-2.2) (Moorcroft248

et al., 2001; Medvigy et al., 2009; Longo, Knox, Medvigy, et al., 2019) to simulate the249

impacts of forest structure on energy, water, and carbon cycles. For any point of inter-250

est, the ED-2.2 model simulates the forest structure and functional diversity across a land-251

scape, and simulates the energy, water, and carbon budgets for multiple canopy envi-252

ronments, which represent the forest heterogeneity (Longo, Knox, Medvigy, et al., 2019).253

ED-2.2 has been successfully evaluated and used in both short-term and long-term stud-254

ies in the Amazon forest (Powell et al., 2013; Zhang et al., 2015; Levine et al., 2016; Longo,255

Knox, Levine, et al., 2019). In ED-2.2, the horizontal and vertical heterogeneities of forests256

are represented through a hierarchical structure. Each area with the same climate (e.g.,257

–10–
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footprint of an eddy covariance tower or a grid cell in a gridded meteorological driver)258

is called a polygon. Each polygon is subdivided into patches, which represent collections259

of forest gaps within a polygon that share a similar age since last disturbance and same260

disturbance type (although not necessarily contiguous in space). Patches are further sub-261

divided into cohorts, which are collections of individual plants that have similar size and262

similar functional group. Importantly, because ED-2.2 incorporates the horizontal het-263

erogeneity of the plant community structure and composition, the model can efficiently264

incorporate and simulate the dynamics of degraded forests.265

Most of the ED-2.2 modules used in this study have been previously described in266

Longo, Knox, Medvigy, et al. (2019). The main changes used in this study include (1)267

a modified height-diameter allometry based on the Jucker et al. (2017) approach and lo-268

cally collected field data that can be used consistently by the initialization and model;269

(2) an improved allocation to living and structural tissues, which is now based on more270

recent allometric equations (Chave et al., 2014; Falster et al., 2016) and datasets (Falster271

et al., 2015); (3) a revised photosynthesis solver, which now accounts for the maximum272

electron transport ratio and the maximum triose-phosphate utilization (von Caemmerer,273

2000; Oleson et al., 2013; Lombardozzi et al., 2018); (4) updated values of traits that are274

used to define trade-offs in tropical plant functional types in ED-2.2 (wood density and275

leaf turnover rate), and updated the trade-off relationships of traits that directly or in-276

directly influence gross primary productivity and light- and water-use efficiency (specific277

leaf area and leaf carbon:nitrogen ratio, maximum carboxylation rate, maximum elec-278

tron transport ratio and maximum triose-phosphate utilization), using multiple studies279

and trait databases, including GLOPNET, TRY, and NGEE-Tropics (I. J. Wright et al.,280

2004; Santiago & Wright, 2007; Chave et al., 2009; Kattge et al., 2009, 2011, 2020; Bar-281

aloto et al., 2010; Powers & Tiffin, 2010; Gu et al., 2016; Bahar et al., 2017; Norby et282

al., 2017). These changes are described in Text S3. Moreover, we used an approach de-283

veloped by X. Xu (unpublished) and based on Lloyd et al. (2010) to account for light-284

dependent plasticity of three leaf traits (specific leaf area, leaf turnover rate, and car-285

boxylation capacity), and calibrated using existing data (Lloyd et al., 2010; Russo & Ki-286

tajima, 2016; Keenan & Niinemets, 2016).287

To obtain initial conditions for ED-2.2 from airborne lidar, we devised a multi-step288

approach that links airborne lidar data with ecosystem properties (Figure 2). Here we289

provide a summary of the initialization procedure; the technical details of this approach290

–11–
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are described in Text S4. For step 1, we split all collected point cloud data into 50×50 m291

columns, simulated waveforms from the discrete returns (Blair & Hofton, 1999; Popescu292

et al., 2011; Hancock et al., 2019) to obtain unscaled leaf area density profiles based on293

the vertical distribution of returns (e.g., MacArthur & Horn, 1969; Ni-Meister et al., 2001;294

Stark et al., 2012; Antonarakis et al., 2014; Tang & Dubayah, 2017), and assigned the295

relative proportion of each plant functional type provided by one of the 769 training plots296

that had the most similar vertical structure; the similarity was based on the profile com-297

parison that yielded the smallest Kolmogorov-Smirnov statistic. The vertical profile was298

split into cohort layers centered around local maxima or saddle points, using a modified299

procedure based on function peaks (package RSEIS, Lees, 2017) of the R statistical soft-300

ware (R Core Team, 2019). For step 2, we used a collection of 817 forest inventory plots301

(0.16–0.26 ha) that were also surveyed by airborne lidar, which included plots from all302

study regions as well additional sites available from Sustainable Landscapes Brazil (SLB)303

and used in a previous study (ancillary SLB sites, Figure 1; Longo et al., 2016); we de-304

veloped statistical models based on subset selection of regression (A. J. Miller, 1984) and305

heteroskedastic distribution of residuals (Mascaro et al., 2011) to estimate plot-level prop-306

erties (aboveground biomass, basal area, stem number density, leaf area index) from point307

cloud metrics and field estimates, following the approach by Longo et al. (2016). For step308

3, we sought to obtain a plot-specific scaling factor to the leaf area density profile that309

produced the best agreement between the four estimated plot-level properties from step310

1 and the plot-level properties obtained by integrating the vertical distribution from step311

2, by minimizing the sum of relative square differences of the four properties. For step312

4, we analyze the scaling factor distribution for all plots for which we could test the ap-313

proach, and define a unique and global scaling factor, based on the median scaling fac-314

tor, that is used to correct all predicted profiles.315

Once we obtained the initial conditions for each 50×50 m column, we grouped in-316

dividual columns based the disturbance history (degradation level) and the study region317

(Table 1). We used the following broad categories for disturbance history: intact (INT),318

reduced-impact logging (RIL), conventional logging (CLx, where x is the number of log-319

ging disturbances), conventional logging and thinning (LTH), logged and burned once320

(LB1) and burned (BNx, where x is the number of burns). Importantly, we did not per-321

form any averaging or sampling of the individual columns before providing them to ED-322
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Figure 2. Schematic representation of the method to obtain initial conditions for ED-2 from

airborne lidar. Each light box represents one step in the procedure. The results of each step

are highlighted with a red border. Dark blue arrows are stages that require individual-based

allometric equations, and light blue arrows are stages that require a light extinction model.

2.2; instead, we provided all columns to the model, so the initial conditions character-323

ize the observed distribution of forest structures that exist within each group.324

2.3 Assessment of the modeling framework325

We evaluated three characteristics to assess the ability of model framework to rep-326

resent the forest structure heterogeneity caused by degradation, and to represent com-327

ponents of the energy, water, and carbon cycle. First, we quantified the ability of the air-328

borne lidar initialization to capture the differences in forest structure caused by degra-329

dation. Second, we assessed whether the model can realistically represent fluxes and stor-330

age of water, energy and carbon across different regions. Third, we compared the model331

sensitivity to degradation-driven effects on fluxes and storage with independent obser-332

vations.333

To evaluate the airborne lidar initialization, we used a cross-validation approach334

in which we replicated the procedure described above (Section 2.2) 2000 times, using a335
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hierarchical bootstrap approach. We first sampled regions (with replacement), to ensure336

that some regions would be entirely excluded from the replicate, then we sampled plots337

(also with replacement), to ensure that the replicate had the same number of plots as338

the original training data set. We then predicted the structure of all plots in the excluded339

regions, using iterations that did not have any plot in the training data set; to make this340

number consistent across regions, we used the smallest number of iterations that met this341

criterion across all regions (n = 612). Finally, for each region, we compared the average342

forest structure from all cross-validation replicates that excluded the region from the train-343

ing stage. Because estimates of forest properties have larger uncertainties in smaller plots344

(Chave et al., 2004; Meyer et al., 2013; Mauya et al., 2015), we only evaluated the method345

when a disturbance class within a region had at least 20 plots.346

To verify the model’s ability to realistically represent the regional variability of fluxes347

and storage, we carried out ED-2.2 simulations initialized with airborne lidar for the in-348

tact forests regions where eddy covariance tower and forest inventory plots co-located349

with airborne lidar were available (GYF and BTE). Region TAN had two eddy-covariance350

towers, one within the footprint of the burned forests and a second in intact forest (Brando,351

Silvério, et al., 2019), which allowed us to contrast the model’s predicted impacts of degra-352

dation on fluxes and biophysical properties with the pair of tower measurements.353

2.4 Model configuration and analyses354

Our main focus is to understand the role of degradation-driven changes in forest355

structure in altering both the state and the fluxes of energy, water, and carbon, both un-356

der typical and extreme climate. To account for regional differences in climate and to357

sample a broad range of interannual variability, we used time series of meteorological drivers358

pooled from gridded reanalyses (one set of time series per region). For most meteoro-359

logical variables required by ED-2.2 (pressure, temperature, humidity, incoming short-360

wave and longwave radiation, and winds), we used 0.625◦×0.5◦, hourly averages (1980–361

2016) from the version 2 of the Modern-Era Retrospective Analysis for Research and Ap-362

plications (MERRA-2, Gelaro et al., 2017). MERRA-2 precipitation is known to have363

significant negative biases in the tropics (Beck et al., 2019); therefore we used the 0.1◦×0.1◦,364

3-hourly precipitation rates from the version 2 of the Multi-Source Weighted Ensemble365

Precipitation product (MSWEP-2, Beck et al., 2019). To ensure that the only difference366

between simulations in the same study region was the distribution of forest structures,367
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we imposed the same edaphic conditions: free-drainage soils with 8 m deep, and nearly368

equal fractions of sand (32%), silt (34%), and clay (34%). To avoid confounding effects369

from post-disturbance mortality and recovery, all simulations were carried out without370

enabling dynamic vegetation, such that the differences in forest structure would remain371

the same for the entire time series, and all differences between simulations in the same372

region could be attributable to well-characterized differences in forest structure. How-373

ever, disabling dynamic vegetation also precluded us from investigating the effects of climate-374

driven changes in the canopy structure on the energy, water, and carbon cycle, and thus375

potentially increasing biases in our estimates of fluxes following extreme events such as376

droughts.377

To investigate the role of degradation on fire risk, we built on the original fire model378

from ED-1 (Moorcroft et al., 2001) to determine when fire-prone conditions would oc-379

cur in each patch. The flammable area αF (% yr−1) is calculated from the fire distur-380

bance rate λF (yr−1):381

αF = 100 [1− exp (−λF ∆t)] , (1)

λF =


I CFuel , if

[
1

|zF |

∫ 0

zF

ϑ (z) dz

]
< (1− f) ϑWp + f ϑFc

0 , otherwise

. (2)

where ∆t = 1 yr; I = 0.5 m2 kgC yr−1 is a fire intensity parameter; zF = 30 cm is the382

depth of the soil layer used to estimate dryness; ϑ (m3 m−3) is the soil moisture; ϑWp383

is the permanent wilting point and ϑFc is the field capacity, both defined as in Longo,384

Knox, Medvigy, et al. (2019); and f = 0.02 is a phenomenological parameter that de-385

fines dry conditions. The values of I and f were selected based on the results from a pre-386

vious model evaluation using ED-2.2 (Longo, Knox, Levine, et al., 2019). Because un-387

derstory fires are the dominant type of fire in the Amazon (A. Alencar et al., 2006; Mor-388

ton et al., 2013), we considered fuels to be comprised by above-ground litter, above-ground389

coarse woody debris, and above-ground biomass from grasses and seedlings (trees with390

height < 2 m); canopy trees were not considered to be fuels. The fire parameterization,391

although simple, has been previously demonstrated to capture the general features of fire392

regime across tropical South America (Longo, Knox, Levine, et al., 2019).393
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3 Results394

3.1 Evaluation of the model initialization and simulated seasonal dynam-395

ics396

The ED-2.2 model initialization approach from airborne lidar (Figure 3) captured397

the main differences in forest structure and composition, both across study regions and398

along degradation gradients. To illustrate the initialization, we focus on the basal area399

distribution obtained from cross-validation at disturbance histories within study regions400

that had at least 20 plots (Figure 3). At sites GYF, PRG, and TAN, the airborne lidar401

initialization predicted the total basal area with absolute biases ranging from 3% (GYF)402

to 13% (TAN), and root mean square error of the order of 18–27% (Figures 3c, 3f and403

3i). The largest absolute discrepancies occurred for intermediate-sized trees (20 ≤ DBH404

< 40 cm) at GYF and PRG, where the airborne lidar initialization underestimated basal405

area by 2.9 and 4.3 cm2 m−2, respectively (Figures 3c and 2f). The largest overestima-406

tion of airborne lidar was observed among larger trees (60 ≤ DBH < 100 cm) in intact407

forests at GYF (2.4 cm2 m−2; Figure 3c). The size distribution of most degraded forests408

were well characterized (Figures 3a-b, 3d-e and 3g); the largest deviations from inven-409

tory were observed in logged and burned forests in PRG, where airborne lidar underes-410

timated total basal area by 3.0 cm2 m−2 (Figure 3d). Likewise, the initialization algo-411

rithm represented the higher relative abundance of early successional plants in the most412

degraded sites, and the dominance of mid- and late-successional plants at intact forests413

at GYF and PRG (Figure S1), and realistically represented the leaf area distribution across414

regions and degradation levels (Figure S2).415

ED-2.2 simulations using forest inventory and airborne lidar as initial conditions416

were compared with eddy covariance tower estimates of all sites (Figures 4 and S4-S9,417

and Table S1). Gross primary productivity (GPP) generally showed small biases rela-418

tive to tower estimates (−0.046 to +0.394 kgC m−2 yr−1), and relatively small errors (less419

than observed variability) at all sites, regardless of the initial conditions (Figure 4; Ta-420

ble S1). While the GPP seasonality was correctly represented at GYF, the model did421

not capture the late wet-season decrease and early dry-season increase of GPP at BTE,422

and it showed a delayed dry-season decline GPP at TAN compared to tower estimates423

(Figure S4). Net ecosystem productivity (NEP), on the other hand, showed significant424

biases, large errors, and relatively small correlation with tower estimates (Figure 4; Ta-425
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Figure 3. Assessment of basal area distribution as a function of diameter at breast height

(DBH) for different study regions and degradation levels. Grey points are obtained from forest

inventory plots, and blue points are obtained from the airborne lidar initialization (Figure 2)

using a 612-fold regional cross-validation (i.e. excluding all plots from region in the calibration

stage). Bands around points correspond to the standard deviation either across all plots in the

same category (inventory) or across all plots and replicates (lidar). Sites: GYF – Paracou, PRG

– Paragominas, FZN – Feliz Natal, TAN – Tanguro. Disturbance classes: BNx – Burned twice

or more, CL1 – conventional logging (once), LB1 – logged and burned once, LTH – logged and

thinned, RIL – reduced-impact logging, INT – intact. Additional comparisons are shown in the

Supporting Information: basal area as functions of plant functional type (Figure S1); leaf area in-

dex profiles as functions of height (Figure S2); comparisons for Belterra (BTE-RIL) (Figure S3).
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ble S1), which were driven by excessive seasonality of heterotrophic respiration (Figure S5).426

Because the initial carbon stocks in necromass pools are uncertain, and the results on427

magnitude and seasonality of ecosystem respiration (and consequently NEP) are incon-428

sistent with tower estimates, we will not discuss the simulation results in terms of res-429

piration and NEP.430

Water fluxes also showed small biases relative to the observed variability at GYF,431

TNF and TAN (Burned), regardless of the initialization (−0.01 to +0.54 mm day−1; Fig-432

ures 4a and 4c; Table S1); biases at TAN (Intact) were larger (0.69−0.82 mm day−1).433

With the exception of TAN (Burned), the correlation between ED-2.2 and tower was high434

at daily averages (Figures 4b and 4d; Table S1). At TAN (Burned), the poorer agree-435

ment with tower estimates was caused by the model predicting a similar seasonality of436

water flux at both control and burned forests, whereas towers suggest an increase in wa-437

ter flux during the earlier part of the dry season (Figure S6). ED-2.2 predictions of sen-438

sible heat flux had high correlation with observations at all sites (Figures 4b and 4d; Ta-439

ble S1), although sensible heat flux shows significant biases at BTE, and dampened sea-440

sonality at GYF and TAN (Burned) (Figures 4a and 4c; Table S1; Figure S6). Outgo-441

ing shortwave radiation correctly captured the seasonality at the wettest sites, but it did442

not capture the sharp dry-season increase at TAN (Figure S8), which may be associated443

with dry-season leaf senescence and shedding that was likely underestimated by ED-2.2.444

In addition, ED-2.2 simulations overestimated outgoing longwave radiation at all sites445

except at TAN (Burned) using inventory initialization (Figure S9). Nonetheless, the sea-446

sonality and the intra-seasonal variation of outgoing longwave radiation were correctly447

captured by ED-2.2, resulting in generally high correlation and small standard devia-448

tion of residuals at most sites (Figure 4; Table S1).449

3.2 Degradation effects on seasonality of fluxes450

From ED-2.2, we found that forest degradation can have substantial impacts on451

the ecosystem function such as evapotranspiration (ET) or ground temperature in severely452

or recently degraded forests, and in parts of the Amazon with a longer dry season. At453

GYF, the airborne lidar survey sampled only intact forests and areas that were logged454

25 years prior to the data acquisition: consequently, the average water vapor flux and455

ground temperature were nearly indistinguishable across degraded and intact forests (Fig-456

ures 5a,S10a). At the equatorial sites, degradation effects were small during the wet sea-457
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Figure 4. Summary of ED-2.2 model assessment using eddy covariance towers as benchmarks,

using simulations initialized with forest inventory and airborne lidar. (a,c) Bias-variance diagram

and (b,d) Taylor diagram of multiple daily-averaged fluxes of carbon, energy, and water for Para-

cou (GYF), Belterra (BTE) and Tanguro (TAN, control and burned), for simulations initialized

with (a,b) forest inventory plots and (c,d) airborne lidar. In the bias-variance diagram, bias (x

axis), standard deviation of residuals (y axis) and root mean square error (concentric arcs) are

normalized by the standard deviation of observations, as is the standard deviation of models in

the Taylor diagram. In both diagrams, � corresponds to the perfect model prediction. In all

plots, we only compare daily averages of days with no measurement gaps. Comparisons of the

seasonal cycle for all variables included in the diagrams are available at Figures S4-S9.
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son but showed marked reduction in ET (2.1–6.7% in BTE and 4.3–31.8% in PRG) and458

increase in daytime temperature (0.4–0.9◦C in BTE and 1.0–6.0◦C in PRG) during the459

dry season, with the largest changes relative to intact forests found at burned areas (Fig-460

ures 5b, 5c, S10b,c). At the southern (driest) sites, the seasonal changes were even more461

pronounced: at both FZN and TAN, ET decreased by 21–25% early in the dry season462

(Jun) at the most severely burned forests, whereas ET in intact forests peaked in the mid-463

dle of the dry season (Jul–Aug; Figures 5d and 5e). Similarly, burned forests were warmer464

year-round than intact forests at the southern sites (FZN and TAN), with minimum warm-465

ing during the wet season (Dec–Mar; 0.5–0.8◦C), and maximum warming occurring at466

the peak of the dry season (Jul–Aug; 1.0–6.5◦C; Figures S10d and S10e).467

Importantly, the ED-2.2 results in Figures 5 and S10 emerge from the different dis-468

tribution of forest structures associated with degradation histories. ED-2.2 accounts for469

the diversity of forest structures within each disturbance history by means of patches;470

each patch represents a different forest structure found within any disturbance regime,471

and patch area is proportional to the probability of finding such forest structure (Longo,472

Knox, Medvigy, et al., 2019). For example, the ground temperature is consistently warmer473

at the low biomass patches, but the differences between the lowest and highest patch tem-474

peratures are as low as 1◦C at GYF (Figure 6a) and less than 4◦C during the wet sea-475

son even at the southern regions (Figures 6d and 6e). In contrast, differences along biomass476

gradients exceed 9◦C during the dry season at all regions except GYF (Figure 6).477

Likewise, when all simulated patches are considered, we observe strong coherence478

between biomass and gross primary productivity (GPP) across all regions and through-479

out the year (Figures 7 and S11). However, the effect of local communities on GPP is480

seasonal: differences in typical GPP between low-biomass and high-biomass patches do481

not exceed 1.1 kgC m−2 yr−1 during the wettest months (Figures 7a–7c), whereas the range482

of GPP reaches 0.7 kgC m−2 yr−1 at the short dry-season at GYF and exceeds 2.0 kgC m−2 yr−1
483

during the dry season at the most degraded and driest sites (Figures 7e and 7f). Sim-484

ilar effects were observed in evapotranspiration, where differences along biomass are the485

strongest during the dry season (Figure S12).486
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Figure 5. Monthly mean evapotranspiration (ET) as a function of region and degradation.

Monthly averages correspond to the 1980–2016 period, simulated by ED-2.2 for (a) Paracou

(GYF), (b) Belterra (BTE), (c) Paragominas (PRG), (d) Feliz Natal (FZN), and (e) Tanguro

(TAN), aggregated by degradation history within each region (lines). Grey rectangles in the

background correspond to the average dry season.

3.3 Degradation impacts on forest flammability487

The impact of forest degradation on ecosystem functioning showed important year-488

to-year variability, and differences between intact and degraded forests were generally489
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Figure 6. Monthly mean daytime ground temperature as a function of region and local

(patch) aboveground biomass. Monthly averages correspond to the 1980–2016 period, simulated

by ED-2.2 for (a) Paracou (GYF), (b) Belterra (BTE), (c) Paragominas (PRG), (d) Feliz Natal

(FZN), and (e) Tanguro (TAN), and the y axis corresponds to the aboveground biomass for each

patch, linearly interpolated for visualization. White areas are outside the range of biomass of

each region and thus excluded.

larger during typical years than during extreme droughts. For this section, we calculate490

the monthly water deficit based on the difference between potential evapotranspiration491
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Figure 7. Variability of gross primary productivity (GPP) as a function of local (patch)

aboveground biomass (AGB). Scatter plot of AGB (x axis) and GPP (y axis) at sites (a,d) Para-

cou (GYF), (b,e) Paragominas (PRG), (c,f) Feliz Natal (FZN), for (a-c) the peak of wet season

— May (GYF), March (PRG), and February (FZN) — and (d-f) peak of dry season — October

(GYF and PRG), and August (FZN). Each point represents the 1980–2016 average GPP of each

patch solved by ED-2.2; point shapes correspond to the disturbance history, and point colors

represent the time between the last disturbance (undetermined for intact forests) and lidar data

acquisition. Curves correspond to non-linear least squares fits of the most parsimonious function,

defined from Bayesian Information Criterion (Schwarz, 1978), between shifted exponential or

shifted Weibull functions. Only fits that produced R2
adj > 0.5 were included.

(calculated following Priestley & Taylor, 1972) and rainfall, and relate the 12-month run-492

ning averages of multiple response variables with the maximum cumulative water deficit493

over the previous 12 months, and define drought length as the number of consecutive months494

in water deficit exceeds 20 mm. Using region PRG as an example, as the region has the495

broadest range of recent disturbances and maximum cumulative water deficit, we found496

that, during typical rainfall periods, evapotranspiration in logged forests and burned forests497

were 3–6% and 11–22% lower than intact forests, respectively (Figure 8a); this differ-498

ence was significantly reduced or even reversed during severe droughts, when evapotran-499

spiration of degraded forests were up to 4% higher than in intact forests (Figure 8a). De-500
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graded forests have a lower proportion of shade-tolerant, late-successional trees, and typ-501

ical stomatal conductance is higher by 19–34% in burned forests and by 5–13% in logged502

forests (Figure 8b). This result indicates that the reduced typical evapotranspiration re-503

sults from degraded forests having lower leaf area index relative to intact forests, as lo-504

cal leaf area index is related to local aboveground biomass (Figure S13). In addition, ex-505

treme droughts did not substantially reduce the differences in stomatal conductance be-506

tween degraded and intact forests (Figure 8b). While evapotranspiration was generally507

lower in degraded forests, total evaporation (from ground and canopy intercepted wa-508

ter) was higher in most degraded forests, with burned forests experiencing 3–26% more509

evaporation in typical years and 0–14% during severe droughts (Figure 8c). The com-510

bination of higher evaporation and relatively shorter canopy (shallower roots) in degraded511

forests were typically translated into slightly drier near-surface soils (Figure 8d): dur-512

ing typical years, soil water availability at the top 30 cm layers was 1.2–12% lower in burned513

forests than intact forests, whereas the differences were more modest in logged forests514

(0.2–3%) and even reversed during extreme droughts (Figure 8d). Carbon and energy515

fluxes showed similar behavior. Gross primary productivity in intact forests steadily de-516

creased with increased drought severity, and the depletion of productivity caused by degra-517

dation is most marked during typical years but is reduced during severe droughts (Fig-518

ure S14a). While ground temperature is always higher in degraded forests (Figure S14b),519

differences in sensible heat fluxes and outgoing longwave radiation also diminish during520

extreme drought conditions (Figure S14c,d).521

Degraded forests show drier near-surface soils (Figure 8d) and warmer surface tem-522

peratures (Figure S14) than intact forests for most years, yet the interannual variabil-523

ity of climate also modulates the differences in water, carbon, and energy cycles between524

degraded and intact forests (Figures 8 and S14). Therefore, both degradation and cli-525

mate may influence the flammability of forests. The average flammable area predicted526

by ED-2.2 (Section 2.4) shows large variation across regions, ranging from nearly zero527

at GYF forests (the wettest region) to over 25% yr−1 at some of the forests in TAN (the528

driest region) (Figure 9a). Within each region (i.e. under the same prescribed climate),529

the model generally predicted higher flammability for the shortest forests (< 10 m), al-530

though predictions also indicate large within-region variability of flammable area for forests531

with intermediate canopy height (10–25 m) (Figure 9a). For most forests, flammable con-532

ditions were predicted mostly during moderate or severe droughts, regardless of the degra-533
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Figure 8. Response of the water cycle components across a forest degradation gradient and

drought severity in Paragominas (PRG). Selected components: (a) Total water vapor flux, (b)

stomatal conductance, averaged by leaf area, (c) evaporation, and (d) soil available water (i.e.

in excess of permanent wilting point) of the top 30 cm. Points correspond to the median value

of 12-month running averages, aggregated into 40 quantiles along the range of maximum cu-

mulative water deficit (MCWD). Bands around the points correspond to the 95% range within

each MCWD bin. Top panels are the absolute value for intact forests, and bottom panels are the

absolute difference between degraded and intact forests. Background shades denote the MCWD

anomaly: light gray – 68% range around the median (dot-dash vertical line); intermediate gray –

95% range; dark gray – anomalies exceeding the 95% range.
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Figure 9. Average flammability as functions of degradation and climate variability. (a)

Scatter plot shows the average flammable area (1980–2016) for each simulated patch across all

regions, as a function of canopy height. Density cloud (background color) was produced through

a bi-dimensional kernel density estimator; points are the averages used to generate each density

cloud. Color ramps (logarithmic) range from 0.1 − 100% of the maximum computed scale. (b)

Flammable area at region PRG, as a function of degradation history and drought length (number

of consecutive months with water deficit in excess of 20 mm). Points correspond to the median

value of 12-month running averages, aggregated into quantiles along the drought length. Bands

around the points correspond to the 95% range within each drought length bin. Top panels are

the absolute value for intact forests, and bottom panels are the absolute difference between de-

graded and intact forests. Background shades denote drought-length classes used in the text:

seasonal (light gray, less than 12 months); severe (intermediate gray, 12–36 months); extreme

(dark grey; more than 36 months). Flammability response to degradation and drought duration

for other regions are shown in Figure S15.

dation history, as exemplified by region PRG (Figure 9b). While the time series of flammable534

area were synchronized across degradation types, ED-2.2 predictions of flammable area535

were generally higher for burned forests than intact or lightly logged forests (Figures 9b536

and S15). The one exception was the driest region (TAN), where forests that burned mul-537

tiple times experienced lower flammability than intact forests (Figure S15d); at TAN,538

even intact forests were relatively short (Figure 9a), which caused ED-2.2 to predict lim-539

ited access to deeper soils and increased desiccation.540
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4 Discussion541

4.1 Initialization of forest structure from remote sensing542

Our method to derive the vertical structure of the canopy from high-resolution air-543

borne lidar successfully characterized the diversity of forest structures of the Amazon,544

captured differences in forest structure variability along a precipitation gradient, and de-545

scribed the within-region variability in forest structure caused by forest degradation (Fig-546

ures 3 and S2-S3). Previous studies have used forest structure derived from remote-sensing547

data to initialize vegetation demography models in tropical forests (e.g., Hurtt et al., 2004;548

Antonarakis et al., 2011; Rödig et al., 2018). However, these studies often assume a re-549

lationship between forest structure and canopy height with stand age. While this assump-550

tion has been successfully applied to intact and second-growth tropical forests (Hurtt551

et al., 2004; Antonarakis et al., 2011), the association between forest structure and suc-552

cession is unlikely to be preserved in degraded forests. For example, understory fires pro-553

portionally kill more smaller trees than large trees (Uhl & Kauffman, 1990; Brando et554

al., 2012; Silva et al., 2018), and selective logging creates complex mosaics of forest struc-555

ture, with substantial losses of large trees from harvesting, and extensive damage to smaller556

trees in skid trails (Feldpausch et al., 2005). In contrast, our approach accounts for the557

entire vertical profile at local (50-m) scale, similarly to Antonarakis et al. (2014), which558

does not require any assumption on the successional stage of the forest. Importantly, our559

approach requires only the vertical distribution of returns, and could be adapted to large-560

footprint, airborne or spaceborne lidar data, including the NASA’s Global Ecosystem561

Dynamics Investigation (GEDI, Hancock et al., 2019).562

We demonstrated that the initialization from airborne lidar profiles captures most563

of the variability across and within regions, yet it has important assumptions and lim-564

itations. First, our approach relies on allometric equations to determine both the diam-565

eter at breast height (DBH), and the individual leaf area (Li, Text S4.3), with the im-566

plicit assumption, that the contribution of branches, twigs, and stems to the lidar return567

signal is negligible. In reality, allometric equations have either large uncertainties (DBH)568

or limited number of samples (Figure S16). Previous studies using destructive sampling569

and terrestrial laser scanning suggest that wood area index may constitute 7–15% of the570

plant area index (Olivas et al., 2013; Schneider et al., 2019). The use of allometric equa-571

tions that account for regional variation (e.g., Feldpausch et al., 2011, 2012), and the ex-572
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pansion of open-source databases, such as the Biomass And Allometry Database (BAAD,573

Falster et al., 2015) used in our study, could further improve the characterization of the574

vertical structure. In addition, the increased availability of terrestrial laser scanning (TLS)575

and high-resolution, low-altitude unmanned aerial vehicle lidar could substantially in-576

crease the data availability and thus improve the overall quality of allometric equations577

and constrain the relative contribution of woody tissues to the total plant area (Calders578

et al., 2015; Stovall et al., 2018; Schneider et al., 2019). Alternatively, techniques that579

extract individual tree crowns from lidar point clouds readily provide highly accurate580

local stem density and local size-frequency distributions (e.g., tree height or crown size;581

Ferraz et al., 2016, 2020). These distributions can be used to attribute DBH to individ-582

uals and generate initial conditions akin to forest inventory to the ED-2.2 model, and583

data-model fusion techniques that leverage the growing availability of data could reduce584

uncertainties on many model parameters, including allometry (F. J. Fischer et al., 2019).585

Finally, ED-2.2 overestimated the seasonality of gross primary productivity and evap-586

otranspiration at the driest region (TAN) (Figures S4 and S6). This result suggests that587

simulated rooting depth for TAN was underestimated in the model. Rooting profiles in588

tropical forests remain largely uncertain: some site studies have sought to relate indi-589

vidual tree size with rooting depth using isotopic measurements (e.g., Stahl et al., 2013;590

Brum et al., 2019), whereas regional studies that provide spatial distribution of rooting591

depth still show important discrepancies in the tropics (e.g., Yang et al., 2016; Fan et592

al., 2017). Constraining the below-ground allocation of tropical ecosystems should be593

a priority in future studies.594

In our study we inferred the functional diversity from forest structure obtained from595

existing forest inventory plots. The functional group attribution captured the general596

characteristics of functional composition along degradation gradients (Figure S1), includ-597

ing the more frequent occurrence of early-successional individuals in degraded forests,598

consistent with field-based studies (Both et al., 2019); nonetheless, uncertainties in func-599

tional attribution from field measurements are high. The increased availability of coor-600

dinated airborne laser scanning (ALS) and airborne imaging spectroscopy (AIS) data601

in mid-latitudes has lead to opportunities to link structural variability with functional602

diversity (e.g., Antonarakis et al., 2014; Schneider et al., 2017), and previous studies have603

successfully integrated ALS and AIS data to attribute functional groups in the ED-2 model604

(e.g., Antonarakis et al., 2014; Bogan et al., 2019). Overlapping ALS and AIS data over605
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tropical forests are becoming increasingly common (Asner et al., 2014; de Almeida et al.,606

2019; Laybros et al., 2019) and could provide new opportunities to reduce uncertainties607

in functional attribution in future studies. Likewise, ongoing and upcoming spaceborne608

missions at the International Space Station such as GEDI (Hancock et al., 2019), and609

the Hyperspectral Imaging Suite (HISUI, Matsunaga et al., 2017) will allow for large-610

scale characterization of structure and function of ecosystems at global scale (Stavros611

et al., 2017; Schimel et al., 2019).612

4.2 Degradation impacts on ecosystem functioning613

In addition to carbon losses and structural changes, degradation has substantial614

impacts on energy and water cycles in Amazonian forests, especially in severely degraded615

forests with marked dry season. According to the ED-2.2 simulations, ground temper-616

ature of logged forests ranged from nearly-identical to intact forests (low-impact logging617

or old logging disturbances) to 0.7◦C warmer (recently logged forests), whereas severely618

burned forests experienced daytime near-surface temperatures increases of as much as619

4◦C (Figure S10), and differences between the lowest and highest biomass patches ex-620

ceeded 9◦C (Figure 6). Observed differences in understory temperatures show large vari-621

ability, but they generally agree with the ED-2.2 results. For example, results of tem-622

perature differences between logged and intact areas in the wet forests of Sabah, Malaysia,623

ranged from negligible to 1.2◦C for average maximum temperature (Senior et al., 2018;624

Jucker et al., 2018). The predicted warmer daytime understory temperatures at recur-625

rently burned forests also yielded drier near-surface conditions: daytime ground vapor626

pressure deficit was on average 15–25 hPa greater than in intact forests (equivalent to627

5–15% reduction in relative humidity), which is within the range observed after the most628

damaging experimental fire at TAN in 2007 (Brando et al., 2014), and similar to differ-629

ences in understory relative humidity reported in the dry season between open-canopy630

seasonally flooded forests and closed-canopy upland forests in the Central Amazon (de631

Resende et al., 2014). Because temperatures are higher in degraded forests, the simu-632

lated changes in energy and water cycle caused by degradation also point to a reduction633

of entropy production in degraded forests, which is consistent with the results across pas-634

tures and intact forests across the Amazon (Holdaway et al., 2010).635

ED-2.2 showed various degrees of agreement with the few existing observational636

studies comparing changes in evapotranspiration due to degradation. Evapotranspira-637
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tion response to reduced-impact logging was minor (−1.9% reduction relative to intact638

in BTE), consistent with eddy covariance tower estimates in a logging experiment in the639

same region (−3.7% reduction after accounting for site differences and interannual vari-640

ability, S. D. Miller et al., 2011). The model results for the experimental fire at TAN,641

however, suggested similar wet-season ET between burned and intact forests (∆ET =642

ETBrn − ETInt = 0.002 mm day−1), with stronger depletion of ET in burned forests643

during the dry season (∆ET = −0.31 mm day−1) (Figures 5 and S6). In contrast, Brando,644

Silvério, et al. (2019) found higher ET in burned forests over a period of 4 years, albeit645

∆ET also showed significant interannual variability. A few other studies suggest that the646

significant decline in dry-season ET in burned forests may be expected in some areas:647

for example, Hirano et al. (2015) found that evapotranspiration of drained and burned648

peatlands with second-growth vegetation in Central Kalimantan (Indonesia) was 0.43 mm day−1
649

lower than drained forests; Quesada et al. (2004) inferred ET changes from soil water650

budget in savannas and found significant reductions following fires in a savanna site in651

Central Brazil. The advent of high-resolution remote sensing products that quantify en-652

ergy, water, and carbon fluxes, such as the ECOsystem Spaceborne Thermal Radiome-653

ter Experiment on Space Station (ECOSTRESS) and the Orbiting Carbon Observatory654

3 (OCO-3), will provide new opportunities to quantify the role of tropical forest degra-655

dation on ecosystem functioning at regional scale (Schimel et al., 2019), as well as to pro-656

vide new benchmark data for ecosystem models.657

Our model results indicate that severe degradation substantially alters the mag-658

nitude and seasonality of energy, water, and carbon fluxes (Figures 5-7 and S10-S12).659

In our study, we disabled the vegetation dynamics in ED-2.2 to ensure that predicted660

differences in ecosystem functioning could be unequivocally attributed to structural di-661

versity, but the differences in ecosystem functioning between degraded and intact forests662

may diminish over time as the forest recovers from previous disturbance. This pathway663

is consistent with the relatively small differences in ET and surface temperature (Fig-664

ures 5-6) observed at logged forests at GYF (25 years since last disturbance) and burned665

forests at BTE (15 years since last disturbance). However, the recovery trajectory is one666

out of multiple possible pathways: degraded forests may be more prone to subsequent667

disturbances (Silvério et al., 2019; Hérault & Piponiot, 2018); the recovery dynamics can668

be long or not attainable if multiple stable states exist or if succession is arrested (Mesquita669

et al., 2015; Ghazoul & Chazdon, 2017), potentially prolonging the impacts of forest degra-670
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dation on energy and water cycles; and feedbacks on precipitation caused by degrada-671

tion could affect the spatial distribution of rainfall similarly to the effect observed with672

deforestation (Spracklen et al., 2018), although to our knowledge this impact has not yet673

been quantified for degraded forests.674

In this study, we focused on the effects of forest structure on ecosystem function,675

and thus we used idealized, homogeneous soil with intermediate hydraulic characteris-676

tics in all simulations. In reality, soils across the Amazon are highly heterogeneous and677

directly affect forest structure across the biome (Quesada et al., 2012). Likewise, soil depth678

and texture and variability in local topography also modulate the effects of tropical for-679

est degradation on microclimate (Jucker et al., 2018). A previous study using ED-2.2680

found that evapotranspiration in Central Amazonia could decrease by 12–16% under sce-681

narios of recurrent yearlong droughts (40% reduction in rainfall), but the severity of the682

decrease varied by 7% under the same climate scenarios but different soil hydraulic prop-683

erties (Longo et al., 2018). These results suggest that degraded forests in clay-rich, com-684

pact soils and deeper water table could amplify reductions in evapotranspiration and gross685

primary productivity during the dry season, while degradation effects on energy, water,686

and carbon cycle would likely be dampened in regions where the water table is near the687

surface for most of the year, or soils with higher water storage capacity.688

4.3 Interactions between forest degradation and climate variability689

The predicted reductions in evapotranspiration (ET) in the most degraded areas690

during the dry season suggest that land-use change impacts on the water cycle may be691

more widespread and pervasive than indicated by earlier studies. Previous model-based692

studies showed that biome-wide deforestation could cause ET to decrease by 25–40% rel-693

ative to intact forests in the Amazon during the dry season (e.g., von Randow et al., 2004;694

Zemp et al., 2017). These reductions are comparable to the ET reductions predicted by695

ED-2.2 at the most degraded forests (21–32%, Figure 5). Because tropical forest degra-696

dation affects an area comparable to deforestation in the Amazon (Tyukavina et al., 2017),697

it may further reduce the strength of the Amazon water vapor source to the atmosphere.698

In our study, we focused on understanding how climate and structure variability impacts699

the water and energy fluxes, but degradation-driven changes in these fluxes are likely to700

feed back into the atmosphere. For example, changes in evapotranspiration and sensi-701

ble heat flux associated with deforestation are known to either redistribute or reduce to-702
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tal rainfall in tropical forests (Spracklen et al., 2018, and references therein), and a sub-703

stantial fraction of South American precipitation water comes from evapotranspiration704

from Amazonian forests (van der Ent et al., 2010). Recent estimates of ET for the Ama-705

zon Basin from the Gravity Recovery and Climate Experiment (GRACE) suggest that706

the basin-wide ET (including intact forests) has decreased by 1.7% between 2002 and707

2015 (Swann & Koven, 2017). In addition, several studies suggest that the dry season708

in the Amazon is becoming longer (Fu et al., 2013; Sena et al., 2018), and land use change709

is one of the main drivers of the drying trend (Barkhordarian et al., 2018). The role of710

forest degradation on ongoing and future changes in climate across the Amazon remains711

uncertain and deserves further investigation, potentially with coupled biosphere-atmosphere712

models that represent heterogeneity in forest structure and functioning (Swann et al.,713

2015; Knox et al., 2015; Wu et al., 2017). Likewise, we could not account for cascading714

effects of climate on the energy, water, and carbon cycle in this study because we dis-715

abled dynamic vegetation. However, severe droughts are known to increase mortality rates716

and canopy turnover in tropical forests (Phillips et al., 2010; Feldpausch et al., 2016; Leitold717

et al., 2018); such disturbances may increase gap fraction and thus reduce gross primary718

productivity and evapotranspiration in the years immediately following the drought. Fu-719

ture studies that include dynamic vegetation can provide further insights on the resilience720

and resistance of degraded and intact forests to climate extreme.721

Our results show that structural changes resulting from forest degradation make722

the forest surface drier and warmer (Figures 5-8 and S10). Drier and warmer conditions723

near the surface increase flammability (Brando, Paolucci, et al., 2019, and references therein),724

and it has been long suggested that forest degradation and canopy opening make forests725

more likely to burn (e.g., Uhl & Buschbacher, 1985; Cochrane et al., 1999; Ray et al.,726

2005; A. A. C. Alencar et al., 2015). The ED-2.2 simulations indeed predicted higher flamma-727

bility in degraded (more open-canopy) forests on any given year (Figures 9 and S15). How-728

ever, our results also suggest that climate strongly drives the variability of flammable729

area across most of our study regions (Figures 9b and S15), which is consistent with the730

significant increases in forest fires in the Amazon during extreme drought years (Morton731

et al., 2013; Aragão et al., 2018). Moreover, our results indicate that differences in flammable732

area between intact and degraded forests are reduced or even reversed during extreme733

droughts, which indicates that under extreme conditions, the level of degradation is less734

critical to create flammable conditions. This effect was predicted for most years at TAN,735
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which typically experiences severe and longer dry seasons compared to the other study736

regions (Figure S15).737

Previous studies suggest that parts of the Eastern Amazon could become drier by738

the end of the century and experience more extreme events, including droughts (IPCC,739

2014; Duffy et al., 2015), and thus potentially more susceptible to future fires (De Faria740

et al., 2017; Brando et al., 2020). However, how tropical forest flammability will respond741

in the long-term to ongoing changes in climate and land use is still uncertain, and re-742

cent studies have shown that either climate (Le Page et al., 2017) or land use (Fonseca743

et al., 2019) could be dominant on predicted shifts in fire regime. Importantly, while our744

analysis focused on flammability, and ED-2.2 fire model captures the general patterns745

of fire disturbance across the Amazon (Longo, Knox, Levine, et al., 2019), it does not746

represent many mechanisms and processes that are critical to describe fire dynamics in747

tropical forests, such as anthropogenic ignitions, diurnal cycle of fire intensity, and fire748

termination, therefore we could not quantify the effects of fire on further forest degra-749

dation. The use of process-based fire disturbance models within the ED-2.2 (e.g., Thon-750

icke et al., 2010; Le Page et al., 2015) framework could contribute to further improve our751

understanding of interactions between forest degradation, climate, and flammability across752

the Amazon.753

5 Conclusion754

Our study showed that tropical forest degradation can markedly modify the ecosys-755

tem functioning in the Amazon, with substantial reductions in evapotranspiration (ET)756

and gross primary productivity (GPP), and increase in surface temperature (Figures 5-757

8). Within the regions included in our study, the effects of degradation on energy, wa-758

ter, and carbon cycles were the strongest in the Eastern and Southern Amazon, where759

the dry season is more pronounced. Notably, in areas where severe forest degradation760

resulted in substantial changes in forest structure, reductions in dry-season evapotran-761

spiration are similar to those found in deforested areas (Figure 5; von Randow et al., 2004).762

The area of the Amazon forest impacted by degradation is comparable to the deforested763

area (Asner et al., 2005; Morton et al., 2013; Souza Jr. et al., 2013; Tyukavina et al., 2017),764

and thus degradation-driven changes in water, energy, and carbon cycles are potentially765

important. However, the extent to which degradation affects the biophysical and bio-766

geochemical cycles at regional scale ultimately depends on (1) annual degradation rates;767
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(2) recovery time of degraded forests; and (3) the likelihood that degraded forests are768

cleared. For example, (Brando, Silvério, et al., 2019) found that ET in burned forests769

was indistinguishable from intact forests 7 years after the last fire. While their result sug-770

gests fast recovery of degraded forests, the impacts of degradation on ET can still be re-771

gionally relevant if degradation rates are sufficiently high to maintain low average age772

since last disturbance in degraded forests. Moreover, we found that the impacts of trop-773

ical forest degradation on energy, water, and carbon cycles and on flammability are more774

pronounced during typical years than during extreme droughts (when all forests become775

flammable), which highlights the complex interactions between climate and forest struc-776

ture. To understand and reduce uncertainties of climate-structure interactions, it would777

be valuable to leverage the recent advances in remote sensing of forest structure, includ-778

ing the recently launched GEDI mission (Hancock et al., 2019), and terrestrial biosphere779

models that can represent complex and heterogeneous ecosystems (Fisher et al., 2018).780

Our study, while focusing on airborne lidar data, has demonstrated the opportunities781

to integrate remote sensing and terrestrial biosphere models even in regions with com-782

plex forest structure such as degraded forests.783
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Davidson, E. A., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F., Bus-969

tamante, M. M. C., . . . Wofsy, S. C. (2012, Jan). The Amazon basin in970

transition. Nature, 481 (7381), 321–328. doi: 10.1038/nature10717971

de Almeida, C. T., Galvão, L. S., Aragão, L. E. d. O. C. e., Ometto, J. P. H. B., Ja-972

con, A. D., Pereira, F. R. d. S., . . . Longo, M. (2019, Oct). Combining LiDAR973

and hyperspectral data for aboveground biomass modeling in the Brazilian974

Amazon using different regression algorithms. Remote Sens. Environ., 232 ,975

111323. doi: 10.1016/j.rse.2019.111323976

De Faria, B. L., Brando, P. M., Macedo, M. N., Panday, P. K., Soares Filho, B. S.,977

& Coe, M. T. (2017, Sep). Current and future patterns of fire-induced978

forest degradation in Amazonia. Environ. Res. Lett., 12 (9), 095005. doi:979

10.1088/1748-9326/aa69ce980

de Resende, A. F., Nelson, B. W., Flores, B. M., & de Almeida, D. R. (2014, Nov).981

Fire damage in seasonally flooded and upland forests of the Central Amazon.982

Biotropica, 46 (6), 643–646. doi: 10.1111/btp.12153983

d’Oliveira, M. V. N., Reutebuch, S. E., McGaughey, R. J., & Andersen, H.-E.984

(2012, Sep). Estimating forest biomass and identifying low-intensity log-985

ging areas using airborne scanning lidar in Antimary State Forest, Acre986

state, western Brazilian Amazon. Remote Sens. Environ., 124 , 479–491.987

doi: 10.1016/j.rse.2012.05.014988

dos-Santos, M., Keller, M., & Morton, D. (2019, Dec). LiDAR surveys over se-989

lected forest research sites, Brazilian Amazon, 2008–2018. Retrieved 31 Jan990

2020, from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds id=1644 doi:991

10.3334/ORNLDAAC/1644992

Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015, Oct). Projections of fu-993

ture meteorological drought and wet periods in the Amazon. Proc. Natl. Acad.994

Sci. U. S. A., 112 (43), 13172–13177. doi: 10.1073/pnas.1421010112995

Erb, K.-H., Fetzel, T., Plutzar, C., Kastner, T., Lauk, C., Mayer, A., . . . Haberl, H.996

–40–

©2020 American Geophysical Union. All rights reserved.



manuscript submitted to JGR: Biogeosciences

(2016, Sep). Biomass turnover time in terrestrial ecosystems halved by land997

use. Nature Geosci., 9 (9), 674–678. doi: 10.1038/ngeo2782998

Erb, K.-H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., . . .999

Luyssaert, S. (2018, Jan). Unexpectedly large impact of forest management1000

and grazing on global vegetation biomass. Nature, 553 (7686), 73–76. doi:1001

10.1038/nature251381002

Falster, D. S., Duursma, R. A., Ishihara, M. I., Barneche, D. R., FitzJohn, R. G.,1003

V̊arhammar, A., . . . York, R. A. (2015, May). BAAD: a biomass and1004

allometry database for woody plants. Ecology , 96 (5), 1445–1445. doi:1005

10.1890/14-1889.11006

Falster, D. S., FitzJohn, R. G., Brännström, Å., Dieckmann, U., & Westoby, M.1007
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Fischer, F. J., Maréchaux, I., & Chave, J. (2019). Improving plant allometry by fus-1037

ing forest models and remote sensing. New Phytol.. (advance online publica-1038

tion) doi: 10.1111/nph.158101039

Fischer, R., Bohn, F., de Paula, M. D., Dislich, C., Groeneveld, J., Gutiérrez, A. G.,1040

. . . Huth, A. (2016, Apr). Lessons learned from applying a forest gap model to1041

understand ecosystem and carbon dynamics of complex tropical forests. Ecol.1042

Model., 326 , 124–133. doi: 10.1016/j.ecolmodel.2015.11.0181043

Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze,1044

M. C., Farrior, C., . . . Moorcroft, P. (2018, Jan). Vegetation demographics in1045

Earth system models: a review of progress and priorities. Glob. Change Biol.,1046

24 (1), 35–54. doi: 10.1111/gcb.139101047

Fonseca, M. G., Alves, L. M., Aguiar, A. P. D., Arai, E., Anderson, L. O., Rosan,1048

T. M., . . . de Aragão, L. E. O. e. C. (2019). Effects of climate and land-use1049

change scenarios on fire probability during the 21st century in the Brazilian1050

Amazon. Glob. Change Biol.. doi: 10.1111/gcb.147091051

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters,1052

G. P., . . . Zaehle, S. (2019, Dec). Global carbon budget 2019. Earth Syst. Sci.1053

Data, 11 (4), 1783–1838. doi: 10.5194/essd-11-1783-20191054

Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., . . . Myneni, R. B.1055

(2013, Nov). Increased dry-season length over southern Amazonia in recent1056

decades and its implication for future climate projection. Proc. Natl. Acad.1057

Sci. U. S. A., 110 (45), 18110-18115. doi: 10.1073/pnas.13025841101058
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M. (2018, Jun). Quantification of selective logging in tropical forest with1196

spaceborne SAR interferometry. Remote Sens. Environ., 211 , 167–183. doi:1197

10.1016/j.rse.2018.04.0091198

Leitold, V., Keller, M., Morton, D., Cook, B., & Shimabukuro, Y. (2015, Feb).1199

Airborne lidar-based estimates of tropical forest structure in complex terrain:1200

opportunities and trade-offs for REDD+. Carbon Balance Manage., 10 (1), 3.1201

doi: 10.1186/s13021-015-0013-x1202

Leitold, V., Morton, D. C., Longo, M., dos-Santos, M. N., Keller, M., & Scaranello,1203

M. (2018, Aug). El Niño drought increased canopy turnover in Amazon forests.1204

New Phytol., 219 (3), 959–971. doi: 10.1111/nph.151101205

Le Page, Y., Morton, D., Bond-Lamberty, B., Pereira, J. M. C., & Hurtt, G. (2015,1206

Feb). HESFIRE: a global fire model to explore the role of anthropogenic and1207

weather drivers. Biogeosciences, 12 (3), 887–903. doi: 10.5194/bg-12-887-20151208

Le Page, Y., Morton, D., Hartin, C., Bond-Lamberty, B., Pereira, J. M. C., Hurtt,1209

G., & Asrar, G. (2017, Dec). Synergy between land use and climate change1210

increases future fire risk in Amazon forests. Earth Syst. Dynam., 8 (4), 1237–1211

1246. doi: 10.5194/esd-8-1237-20171212

Levine, N. M., Zhang, K., Longo, M., Baccini, A., Phillips, O. L., Lewis, S. L., . . .1213

Moorcroft, P. R. (2016, Jan). Ecosystem heterogeneity determines the re-1214

silience of the Amazon to climate change. Proc. Natl. Acad. Sci. U. S. A.,1215

113 (3), 793–797. doi: 10.1073/pnas.15113441121216

Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015, Aug). Increasing human dom-1217

inance of tropical forests. Science, 349 (6250), 827–832. doi: 10.1126/science1218

.aaa99321219

Lloyd, J., Patiño, S., Paiva, R. Q., Nardoto, G. B., Quesada, C. A., Santos, A. J. B.,1220

. . . Mercado, L. M. (2010, Jun). Optimisation of photosynthetic carbon gain1221

and within-canopy gradients of associated foliar traits for Amazon forest trees.1222

Biogeosciences, 7 (6), 1833–1859. doi: 10.5194/bg-7-1833-20101223

Lombardozzi, D. L., Smith, N. G., Cheng, S. J., Dukes, J. S., Sharkey, T. D.,1224

Rogers, A., . . . Bonan, G. B. (2018, Jul). Triose phosphate limitation in1225

photosynthesis models reduces leaf photosynthesis and global terrestrial carbon1226

storage. Environ. Res. Lett., 13 (7), 074025. doi: 10.1088/1748-9326/aacf681227

–47–

©2020 American Geophysical Union. All rights reserved.



manuscript submitted to JGR: Biogeosciences

Longo, M., Keller, M., dos-Santos, M. N., Morton, D., Moorcroft, P. R., Vincent, G.,1228

. . . Saatchi, S. (2020, Feb). Supporting dataset for “Impacts of degradation1229

on water, energy, and carbon cycling of the Amazon tropical forests”. Zenodo.1230

doi: 10.5281/zenodo.36341311231

Longo, M., Keller, M., dos Santos, M. N., Leitold, V., Pinagé, E. R., Baccini, A., . . .1232
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Mar). Forest degradation and biomass loss along the Chocó region of Colom-1292
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