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Abstract. Insights into vegetation and aboveground biomass dynamics within terrestrial
ecosystems have come almost exclusively from ground-based forest inventories that are limited
in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based
techniques for obtaining comprehensive measurements of forest structure at regional to global
scales. In this study we investigate how Lidar-derived forest heights and Radar-derived
aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere
model. Four-year simulations initialized with Lidar and Radar structure variables were
compared against simulations initialized from forest-inventory data and output from a long-
term potential-vegtation simulation. Both height and biomass initializations from Lidar and
Radar measurements significantly improved the representation of forest structure within the
model, eliminating the bias of too many large trees that arose in the potential-vegtation-
initialized simulation. The Lidar and Radar initializations decreased the proportion of larger
trees estimated by the potential vegetation by ;20–30%, matching the forest inventory. This
resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics
compared to predictions from the potential-vegtation simulation. The Radar initialization
produced biomass values that were 75% closer to the forest inventory, with Lidar
initializations producing canopy height values closest to the forest inventory. Net primary
production values for the Radar and Lidar initializations were around 6–8% closer to the
forest inventory. Correcting the Lidar and Radar initializations for forest composition
resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting
the Lidar and Radar initializations for forest composition and fine-scale structure by
combining the remote-sensing measurements with ground-based inventory data further
improved predictions, suggesting that further improvements of structural and carbon-flux
metrics will also depend on obtaining reliable estimates of forest composition and accurate
representation of the fine-scale vertical and horizontal structure of plant canopies.

Key words: biomass; canopy height; ecosystem demography; ecosystem modeling; forest composition;
forest structure; La Selva Biological Station, Costa Rica; Lidar; NASA’s DESDynI mission; net primary
production, NPP; radar; reducing modeling error.

INTRODUCTION

Terrestrial ecosystem and biosphere models are

essential tools for predicting the expected response of

terrestrial ecosystems to changes in climate, CO2, and

other natural and anthropogenic environmental forc-

ings. Optical remote-sensing data sets have been a key

source of information on the dynamics of plant canopies

at the regional to global scales necessary for parameter-

izing and testing regional- and global-scale terrestrial

ecosystem and biosphere models (e.g., Potter et al. 2003,

Anderson et al. 2008). In particular, satellite-based

optical remote-sensing measurements of changes in

surface reflectance have yielded global data sets on the

dynamics of leaf-area index (LAI), vegetation greenness,

and other measures of foliar vegetation on timescales

ranging from days to decades at resolutions of

kilometers or less (Nemani et al. 2003, Myneni et al.

2007). There are also numerous derived data sets

regarding ecosystem properties and dynamics, such as

land-cover classifications and land-use transitions

(Masek et al. 2006, Hansen et al. 2008). However,

optical remote sensing is not able to directly measure

changes in woody biomass and other key metrics of

vegetation structure, such as basal area and canopy

height that are key variables for both diagnosing current

ecosystem state, and predicting long-term changes in

ecosystem composition and function. Instead, informa-

tion on the composition and structure of forests (i.e., the

relative abundance of trees of different species and their

distribution across tree size classes and across horizontal
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space) has been obtained from laborious and expensive

ground-based forest inventories of individual trees. As a

result, the sample sizes and spatial extent of forest

inventories are often small, and thus unable to provide

comprehensive, region-wide information on the dynam-

ics of vegetation structure and biomass in many areas of

the globe. This is particularly true in the tropics, where

comprehensive, regional-scale inventories are not gen-

erally available.

Light Detection and Ranging (Lidar) and Radio

Detection and Ranging (Radar) measurements offer

promising ways to obtain information on the dynamics

of vegetation structure, at both the scale of individual

trees (Popescu et al. 2003, Antonarakis et al. 2008) and

the canopy (Drake et al. 2002, Saatchi et al. 2007, Sun et

al. 2008). Lidar, due to its ability to measure the distance

from the sensor to the surfaces in its path, has been used

mainly to extract canopy heights. Radar pulses have the

primarily to penetrate canopies of different densities

depending on the wavelength of the pulse emitted, and

thus have been used to estimate basal area, volume, and

aboveground biomass (AGB) from radar backscatter

measurements (Fransson et al. 2000, Quiñones and

Hoekman 2004, Saatchi et al. 2007). The most recent

Radar Interferometry techniques have extended the

application of the Radar remote sensing in estimating

forest heights (Cloude and Papathanassiou 1998,

Sarabandi and Lin 2000, Askne et al. 2003, Treuhaft

and Siqueira 2004).

In this study we analyze the ability of Radar and

Lidar remote-sensing measurements to provide infor-

mation on forest structure that can be assimilated into a

terrestrial biosphere model, and, by doing so, constrain

and improve its predictions of carbon fluxes and

ecosystem dynamics. The model used in this analysis is

the ED2 terrestrial biosphere model (Medvigy et al.

2009). Like its predecessor, ED2 uses a system of partial

differential equations to approximate the behavior of a

heterogeneous, spatially distributed ensemble of indi-

vidual plants (Hurtt et al. 1998, Moorcroft et al. 2001,

Moorcroft 2003). The equations and parameter values

of ED2 thus incorporate the nonlinear impacts of fine-

scale horizontal and vertical heterogeneity in ecosystem

structure on both the plant-level carbon and water fluxes

that underlie the canopy-scale exchange of CO2 and

H2O with the atmosphere and the plant-level growth

and mortality dynamics that underlie the long-term

vegetation dynamics of the ecosystem (Moorcroft 2006,

Medvigy et al. 2009). The model, therefore, can simulate

the ecosystem dynamics and carbon fluxes at any spatial

scale and can be readily integrated with spatially explicit

data on the horizontal and vertical structure of the

vegetation.

As discussed by Hurtt et al., (2004), several distinct

approaches are used for initializing terrestrial ecosystem

and biosphere models. By far the most widely used

approach has been to initialize model simulations with

an arbitrary initial condition (usually a near-bare-

ground ecosystem), and then force the model with

appropriate near-surface climate-forcing data until the

model reaches its so-called ‘‘potential-vegtation’’ equi-

librium for the locations(s) of interest. The problem with

this potential-vegetation approach is that when evalu-

ating a terrestrial ecosystem or biosphere model’s

predictions of vegetation dynamics, one is usually

interested in assessing the model’s so-called process

error—errors arising from inaccuracies in the model

formulation embodied in its current equations and

parameter values. This is normally done by comparing

its predictions of observable quantities such as an

ecosystem’s net rate of carbon exchange, or its rate of

aboveground biomass accumulation within the ecosys-

tem over a certain period of time (e.g., Braswell et al.

2005, Medvigy et al. 2009). However, there are two

additional important sources of error that affect the

model’s predictions for an ecosystem. The first is the

forcing error, error caused by inaccuracies in the climate

data used to force the model simulation; the second is

the initialization error, error in the model’s ecosystem

state at the beginning of the observation period.

Minimizing these additional two sources of error is

critical to improving resulting terrestrial ecosystem

predictions.

For the forcing error, the best approach is to use,

whenever possible, observed meteorology rather than

meteorological reanalysis data, or output from an

atmospheric model, to prescribe the necessary environ-

mental forcings for the ecosystem or biosphere model.

However, even in situations when observed meteorolog-

ical forcing data are available, and thus there is minimal

forcing error, it is unknown to what extent mismatches

between the model predictions reflect process error, or

simply initialization error arising from incorrect speci-

fication of the initial ecosystem state.

Minimizing initialization error is more challenging,

since it requires information on the values of the model’s

state variables at the beginning of a simulation. In the

case of terrestrial ecosystem and biosphere models, such

as ED2, a critical state variable is the amount of

aboveground biomass and the vertical and horizontal

distributions of this quantity within the forest canopy.

As shown by Medvigy et al. (2009), forest inventories

can be used to specify the current structure and

composition of the aboveground ecosystem and thereby

reduce the initialization error. By doing so, it is possible

to better identify and correct the model’s process error,

and thus improve its ability to predict the future fate of

the ecosystem. Forest-inventory observations do not

provide a complete description of vegetation state, since

they do not provide information on the values of other

vegetation-state variables, such as leaf biomass and

amount of stored carbon. However, they crucially

provide a near-complete specification for current state

of the vegetation structure and composition within the

area sampled, which governs its long-term decadal to

century-scale dynamics of the ecosystem (Moorcroft et
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al. 2001). Moreover, as shown by Medvigy et al., (2009),

the unknown values of other shorter-term carbon pools

can be assessed by performing a short-term spin-up

simulation (i.e., starting from a near-bare-ground initial

condition) with observed environmental forcing.

As noted earlier, the problem with forest-inventory

observations lies in their limited availability in many

ecosystems, and lack of consistencies in the way in which

the measurements are collected in different areas. These

factors hinder the ability to conduct rigorous regional- and

global-scale evaluations of terrestrial ecosystem and

biosphere models.

In this analysis we explore how Lidar-derived canopy

height and Radar-derived measurements of above-

ground biomass can provide information on current

ecosystem structure, and thus be used to constrain the

predictions of terrestrial ecosystem and biosphere

models, by reducing initialization error. Specifically,

building on the earlier work of Hurtt et al. (2004), we

compare ED2 biosphere-model simulations for the La

Selva tropical forest ecosystem initialized with Radar

and Lidar measurements against ED2 simulations

initialized with potential vegetation, and against ED2

simulations initialized from forest-inventory measure-

ments of vegetation structure and composition.

Successful applications of these methods could pave

the way for far more rigorous regional- and global-scale

evaluations of terrestrial ecosystem and biosphere

models.

STUDY AREA AND DATA

Study area

La Selva Biological Station in northeast Costa Rica

(Fig. 1) is one of the most heavily studied tropical forests

in the world (Clark 1988, McDade et al. 1994). This

1536-ha area is comprised of a mixture of lowland old-

growth and secondary tropical wet forest (Holdridge et

al. 1971, Guariguata et al. 1997, Clark and Clark 2000),

abandoned pasture, current and abandoned plantations,

and agroforestry plots (Menalled et al. 1998). Elevation

ranges approximately 35–135 m above sea level, with a

north–south gradient resulting in higher elevations and

steeper slopes to the south where the reserve borders on

the Braulio Carrillo National Park. The soils at La Selva

are primarily a mixture of inceptisols in the north and

residual ultisols to the south (Clark et al. 1998). The

spatial heterogeneity in soil and topography affects stem

size, density, stand dynamics, wood density, and

aboveground biomass (Clark and Clark 2000, Baker

et al. 2006, Chave et al. 2006, Saatchi et al. 2010).

Because of the variety of land-cover types and the wealth

of ancillary data (e.g., soil, topography, forest struc-

ture), La Selva is an excellent site for assessing the

potential for remote-sensing measurements to measure

spatial variation in tropical-forest biomass arising from

both abiotic landscape heterogeneities and disturbance

history.

FIG. 1. Raster layer of (A) Lidar-derived canopy height and (B) Radar-derived aboveground biomass (AGB).
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Remote-sensing data

In March of 2004 the NASA/JPL (Jet Propulsion

Laboratory) airborne SAR (synthetic-aperture radar)

system (AIRSAR) acquired fully polarimetric images

along with simultaneous interferometric TOPSAR

data over the La Selva Biological Station. The

polarized backscatter values derived from these mea-

surements are HH, HV, and VV, where H and V

represent the horizontal and vertical transmit and

receive polarizations, respectively. The Radar data set

used in this study was the fully polarimetric P-band

(435 MHz, 20 MHz bandwidth) AIRSAR imagery

acquired at 10-m spatial resolution over an 11-km-

wide transect at incidence angles ranging from 20 to 60

degrees. All images were terrain corrected using the

digital elevation data acquired by the TOPSAR

interferometric modes and ground control points,

and orthorectified into a Universal Transverse

Mercator (UTM) projection using high-resolution

optical remote-sensing data with a large number of

ground control points that provided registration

accuracy of ;15 m (1.5 pixels).

Saatchi et al. (2010) used the fully polarimetric P-

band AIRSAR imagery in conjunction with ground-

based forest inventory to estimate the spatial variation

in aboveground biomass (AGB) across the La Selva site

(Fig. 1). The radar backscatter image was upscaled to a

100-m spatial resolution to estimate the AGB at a scale

where the spatial variability of forest structure due to

small-scale disturbance is removed and the radar

backscatter measurements are improved from the

reduction of speckle noise (Saatchi et al. 2010). AGB

values from radar backscatter were determined by

using a statistical regression model between AGB and

the backscatter at different polarizations. The model

used was a multiple linear-regression model developed

between the square root of the AGB and a linear

combination of P-band backscatter measurements at

three polarizations, as defined in Saatchi et al. (2010),

as

AGB0:5 ¼ a0 þ a1cHH þ a2cHV þ a3cVV ð1Þ

where the coefficients (a0, a1, a2, and a3) are

determined statistically using allometrically derived

biomass values from field trunk diameters, and the

normalized P-band backscatter values (c) at the

different polarizations (HH, transmitted and received

radiation was vertically polarized; HV, transmitted

radiation was horizontally polarized and received

radiation was horizontally polarized; VV, transmitted

and received radiation was vertically polarized). The

estimated P-band regression coefficients for 1.0-ha

scale AGB at La Selva are: a0 ¼ 0.73; a1 ¼ 42.13; a2
¼ 323.02; a3 ¼ 71.51 (Saatchi et al. 2010). The

backscatter values were also normalized by the

incidence angle of the transmitted polarizations

(Saatchi et al. 2010).

In March 2005 the spatial pattern of canopy height

at La Selva (Fig. 1) was determined using the laser

vegetation-imaging sensor (LVIS), a medium-altitude,

medium-to-large footprint imaging laser altimeter,

designed and developed at NASA’s Goddard Space

Flight Center. LVIS digitizes the entire return signal,

thus providing a waveform relating to the vertical

distribution of intercepted canopy and ground surfaces

within each LVIS footprint (Blair et al. 1999, Dubayah

and Drake 2000, Dubayah et al. 2000). The digital

elevation model (DEM) was determined from the LVIS

ground return, and was initially gridded at a 20-m

resolution. This was measured as the elevation above

sea level and had an absolute accuracy of 63.37 m

(Saatchi et al. 2010). The original 10-m radar back-

scatter image was co-registered with this 20-m DEM, to

a registration error of ,10 m. In this analysis we used

RH100, the difference between the height of the first

Lidar-return and the ground-return signal that pro-

vides a measure of the maximum height of the forest

canopy within each Lidar footprint. These values were

upscaled to 100-m pixels by averaging the RH100

values derived from the LVIS shots.

Forest-inventory measurements

Ground-based measurements of forest structure were

available from the Transect (Saatchi et al. 2010) and

Bosques (Chazdon et al. 2005) forest-inventory plots

for a mixture of old-growth and secondary forests. For

the Transect plots, all stem diameters of trees greater

than 10 cm in seven plots corresponding to a total area

of 5.5 ha were measured, and the species of each stem

was identified. For the Bosques plots, all stem

diameters of trees greater than 5 cm in two plots with

plot sizes of 1 ha were measured and the species of each

stem was identified. All the tree-level data used for

model initializations were weighted by their respective

plot sample areas. The species found within these plots

were classified into the ED2 terrestrail biosphere model

plant functional types (see next section) based on their

wood density determined using the data sets of Chave

et al. (2006) and the FAO (Brown 1997). The ED2

plant functional-type classifications described in

Moorcroft et al. (2001) are defined by the relationship

between the plant’s wood density (q) and its leaf

longevity (l ), where q ¼ 0.5 þ 0.2(l � 1). Here, early

successional plants are denoted as having a leaf life

span of one year with a resulting wood density of 0.5 g/

cm2, mid-successional plants as having a leaf life span

of two years with a resulting wood density of 0.7 g/cm2,

and late-successional plants as having a leaf life span of

three years with a resulting wood density of 0.9 g/cm2.

It should be noted that work is currently being done to

better define these density thresholds for Central

American trees. Of the over 6000 trees measured in

the field, 83.5% of the individuals were categorized as

being early successional trees, 16.1% as mid-succes-

sional trees, and 0.4% as late-successional trees.
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MODEL AND METHODS

ED2 terrestrial biosphere model

The ED2 terrestrial biosphere model (Fig. 2) simu-

lates vegetation dynamics using integrated submodels of

plant growth and mortality, phenology, disturbance,

biodiversity, hydrology, and soil biogeochemistry, and a

system of size- and age-structured partial differential

equations to approximate the behavior of an individual-

based spatially distributed collection of plants within

each climatological grid cell (Moorcroft et al. 2001,

Medvigy et al. 2009). These equations track the

changing abundance of trees of different sizes and plant

functional types arising from tree growth, mortality,

recruitment, and the impact of disturbances. The partial

differential equations are defined as

]

]t
nðiÞðz; a; tÞ
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¼ � ]

]z
½gðiÞðz; r̄; tÞ nðiÞðz; a; tÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

plant growth

� ]

]a
nðiÞðz; a; tÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

aging of plant community

� lðiÞðz; r̄; tÞ nðiÞðz; a; tÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mortality

ð2Þ

]

]t
pða; tÞ

|fflfflfflffl{zfflfflfflffl}

change in age structure

¼ � ]

]a
pða; tÞ

|fflfflfflfflffl{zfflfflfflfflffl}

aging

� kða; tÞpða; tÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
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where

]

]z
¼ ]

]zs

;
]

]za

� � Z ‘

0

pða; tÞ da ¼ 1

and where Eq. 2 relates the change in expected plant

density (n) with the growth rate, mortality rate, and

aging of a plant community of functional type i, where z

is the size of individuals, a is the time since last

disturbance, r̄ is a vector describing the resource

environment (light, water, nitrogen) experienced by an

individual of a certain size, and t is time. The functions

g(i )(z, r̄, t) and l(i )(z, r̄, t) represent the growth and

mortality factors at any time t. The growth can be

further described as an array of structural (zs) and active

tissue (za) growth compartments. Eq. 3 describes the

changes in the distribution of landscape ages since the

last disturbance event, where k(a, t) is the rate of

disturbance. For both Eqs. 2 and 3 a boundary

condition is the recruitment of new seedlings corre-

sponding to a flux of individuals into the system at (z0,

a) under the assumption of random dispersal of seeds

between gaps within a grid cell, and Eq. 2 has a second

boundary condition, describing the state of the ecosys-

tem following a disturbance event related to the

survivorship of individuals following the disturbance

event of the plant of type i and size z. Finally, Eq. 3 has a

boundary condition describing the fraction of newly

disturbed areas within a grid cell (see Moorcroft et al.

[2001] for further details).

The size and age structure approximation is complet-

ed by initial conditions corresponding to the initial size

distribution for Eq. 2 and to the initial age distribution

for Eq. 3 of the plant types:

nðiÞðz; a; 0Þ ¼ n
ðiÞ
0 ðz; aÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

initial plant community

pða; t0Þ ¼ p0ðaÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

initial age disturbance

: ð4Þ

With this system of equations ED2 is able to represent

the dynamics of spatially heterogeneous forest commu-

nities that arise due to natural disturbances, such as fire,

and anthropogenic disturbances, such as forest harvest-

ing or land clearing (e.g., Hurtt et al. 2004, Albani et al.

2006, Medvigy et al. 2009). Plants within each climato-

logical grid cell experience the same meteorological

forcing, specified either from a meteorological forcing

data set or from the boundary conditions of an

atmospheric model (Fig. 2A). Each grid cell is sub-

divided into a series of dynamic horizontal tiles

representing areas of forest that share a similar

vegetation canopy structure and disturbance history.

Long-term vegetation dynamics are produced by inte-

grating short-term carbon dynamics (Fig. 2B) of

individual plants which, in turn, drive the dynamics of

canopy mortality, growth, and recruitment in Eq. 2 (Fig.

2C). Each plant functional type i also differs in terms of

its leaf physiology and wood density that result in

different rates of growth and mortality and sensitivity to

environmental conditions. Following Moorcroft et al.

(2001), four tropical-plant functional types were repre-

sented; C4 grasses, early, mid-, and late-successional

trees. Since a palm plant functional type was not

available, the 12% of stems that were palms were

assigned to one of the three tree functional types based

on their wood density. With the exception of Welfia

regia, this resulted in all palms being categorized as early

successional, with W. regia being classified as mid-

successional.

The temperature, precipitation, humidity, wind, and

pressure meteorological forcing variables for the model

simulations were specified from measurements at the La

Selva meteorological station spanning the period 1992–

2005. Since earlier analyses have indicated that the

radiation measurements available at La Selva appear to

be unreliable due to inaccuracies in the instrument at

high temperatures and humidity (D. A. Clark, personal

communication), the shortwave and longwave radiation

forcing was specified from the National Centers for

Environmental Predictions/National Center for Atmo-

spheric Research (NCEP/NCAR) Reanalysis data,

which is a continuation from the similar Climate Data

Assimilation System (CDAS) (Kalnay et al. 1996). The

spatial grid cell of the climate data is larger than the

ED2 modeling grid cell, indicating that all forest types

within the model grid cells are exposed to the same

climate forcing.
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Analysis

As noted in the Introduction, we conducted ED2

simulations using four different sources of initialization

data. The first was a traditional potential-vegetation

(PV)-initialized simulation, in which the model was

initialized with output from a long-term simulation that

began in 1500 with nearly bare ground and continued to

the present, yielding a forest structure that is in dynamic

equilibrium with the climate-forcing data. For all runs

the climate driver was prescribed by sequentially cycling

over the 1992–2005 data set. The second type of

initialization data set was calculated from the ground-

based observations of forest structure following the

procedure of Medvigy et al. (2009). Because the canopy-

gap-scale distribution of times since last disturbance

within the inventory observations p(a, t0) is not known,

horizontal heterogeneity in canopy composition was

represented explicitly by grouping the inventoried plots

into a series of distinct subgrid-scale tiles based on their

similarity in vertical structure and composition. The

compositional profile within each tile was then defined,

assigning all trees to their corresponding plant func-

tional type based on their wood density values as defined

FIG. 2. Schematic figure representing the ED2 terrestrial-biosphere model structure and process. (A) Each grid is subdivided
into tiles with the relative area of each tile determined by the proportion of canopy-gap-sized areas having a similar forest structure
due to a similar disturbance history. (B) Within each tile, the multilayer short-term canopy fluxes of water (W ), internal energy
(H ), and carbon (C ) are calculated. Abbreviations: PAR, photosynthetically active radiation; NIR, near infrared; and TIR,
thermal infrared. (C) An illustration of the long-term vegetation dynamics in heterogeneous plant communities resulting from the
short-term fluxes. The growth is represented in terms of stem and active tissue growth (gs, ga), the mortality as a rate l, recruitment
at rate f within and between gaps, and disturbance at rate kF (from Medvigy et al. 2009). Other abbreviations: N, nitrogen; y, gap;
and t, time.
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in Study area and data: Forest inventory measurements,

above.

The third kind of initialization utilized Radar-derived

spatial distribution of aboveground biomass AGB(X,

Y ) (Fig. 1B) to constrain the distribution of above-

ground biomass within the simulation domain at the

beginning of the simulation. The equivalent above-

ground biomass (AGB) distribution in the ED2 model is

AGBða; t0Þpða; t0Þ ð5Þ

where p(a, t0) is landscape-scale age distribution at the

beginning of the simulation (t0), and AGB(a, t0) is the

aboveground biomass related to the canopy-gap age at

the beginning of the simulation. Using the approach of

Hurtt et al. (2004), the ED2 model distribution ( p(a, t0))

in Expression 5 can be adjusted to match the Radar-

derived biomass distribution, for equivalent biomass

values, thereby providing an empirical constraint on

the state of the aboveground ecosystem at the beginning

of the simulation.

Unlike the forest-inventory data, Radar-derived

biomass (AGB(X, Y )) does not uniquely specify the

state of the ecosystem (Eq. 4), because it does not

provide the breakdown of biomass across size classes

and plant functional types.

An estimate for this breakdown comes from the output

from the potential-vegtation (PV) simulation: i.e.,

nðiÞðz; a; t0Þ} n
ðiÞ
PVðz; a; tmaxÞ ð6Þ

where n(i)(z, a, t0) is the distribution of stems at the

beginning of the model simulation and n
ðiÞ
PV(z, a, tmax) is

the distribution of stems at the end of the PV simulation.

Adjusting the PV simulation biomass distribution with

the Radar-derived values, results in an altered distribu-

tion of aboveground biomass across size classes and plant

functional types.

The fourth initialization was produced in a similar

manner, but this time using the spatial distribution of

canopy height values H(X, Y ) obtained from the Lidar

measurements to constrain the equivalent distribution in

ED2 model:

Hða; t0Þpða; t0Þ: ð7Þ

Here, H(a, t0) is the relationship between canopy height

and canopy-gap age, with the breakdown of across-size

classes and plant functional types again specified using

Eq. 6. Again, Lidar-derived canopy height fractional

areas are used to adjust fractional areas from the

equivalent height value class in the ED2 model. Fig. 3

illustrates the model initialization procedure by high-

lighting the steps involved in matching the Radar AGB

and Lidar height data with the potential-vegtation

simulation output.

Data fusion

The Radar and Lidar initializations described in the

previous section constrain forest structure, but provide

no information on forest composition. In the approach-

es described in the Analysis section, the composition

information is provided by the output of the PV

simulation. Since errors in composition also have a

significant influence on the model’s predictions, we

explored the effects of using additional information—in

this case the forest-inventory data—to correct errors in

forest composition. A flow chart summarizing this

composition-correction method is shown in Fig. 4A.

As before, the Radar biomass (AGB(X, Y )) and Lidar

heights (H(X, Y )) were used to adjust the PV forest

structure distributions (Eqs. 5 and 7), however now, the

breakdown of size classes and plant functional types

from the PV simulation described in Eq. 6 is used in

these re-initializations, altering the potential-vegtation

plant types (n(i )(z, a, t0)), to match the forest-inventory

plant types. This was done by specifying the proportion

of plant functional types in each diameter class from the

forest inventory and applying this to the Radar and

Lidar initializations.

In a subsequent approach we exercised another form

of data fusion in which the full forest inventory plots are

used, as they provide detailed information on the actual

distribution and composition. This fusion links the

spatially heterogeneous Lidar canopy-height and Radar

biomass measurements to the fine-scale distributions of

height and biomass across size classes. The fusion

technique is described in the flow chart in Fig. 4B.

From the plant density and diameter-at-breast-height

(dbh) information measured in the field, ED2 allometry

was used in order to determine the height and biomass

associated with each individual tree. ED2 relates the

height of each individual tree to its dbh, where the slope

and intercept is specific to the plant functional type.

Aboveground biomass is determined for a plant

functional type of a certain height, from a combination

of stem, sapwood, leaf, seeds, and storage components

of biomass. These resulting structure metrics aggregated

at the patch level are adjusted with the proportions of

each AGB and height value determined from Radar and

Lidar data before re-initializing.

RESULTS

The prior distributions (circles) and adjusted distri-

butions (crosses) of aboveground biomass (AGB) and

canopy heights (H ) are shown in Fig. 5A and B,

respectively. The distribution of AGB in the potential-

vegetation (PV) simulation (circles) is negatively skewed,

reflecting the model’s assumption of a constant, spatially

uniform rate of disturbance (see Model and methods:

ED2 biomass model, above), which yields a negative

exponential distribution of canopy-gap ages. In con-

trast, the distributions of AGB and H determined from

the Radar and Lidar measurements (triangles) at 100-m

(0.1-ha) grid cells are generally more normally distrib-

uted, suggesting a landscape-scale equilibrium state for

forest structure and biomass at that scale. The results

also suggest that the PV model cannot simulate the
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forest structure accurately at that prescribed scale. The

Lidar-derived distribution of canopy heights is slightly

negatively skewed, likely reflecting the underlying

averaged RH100 criterion for determining canopy

height from Lidar waveform data at the 100-cm grid

cell.

Forest structure

The forest structure of the four initializations are

shown in Fig. 6, with visualizations of the stand

structure, and the accompanying distribution of forest

basal area and aboveground biomass across tree-

diameter classes. In the forest-inventory initialization

(Fig. 6A), most of the basal area and biomass is located

in the 0–100 cm diameter range, with 28% and 10% of

the basal area distributed in the .60-cm- and .100- cm-

diameter class ranges, respectively. In contrast, in the

original potential-vegetation (PV) simulation (Fig. 6B),

basal area and AGB are spread across a larger range of

size classes (range: 0–240 cm) with 54% and 34% of the

forest basal area in the .60 cm and .100 cm ranges,

respectively. There are also differences in composition

between forest-inventory and PV simulation. In the

forest-inventory approach, 88% of the basal area is early

successional trees, with the majority of the remainder

belonging to the mid-successional plant functional type.

In contrast, in the PV simulation only 31% of the trees

are early successional, with 69% late successional.

Both the Radar-derived (Fig. 6C) and Lidar-derived

(Fig. 6D) initializations yield basal area and AGB

diameter-class distributions that are significantly closer

to the observed forest structure than did the PV

simulation. Both forms of remote-sensing initializations

have basal area and AGB diameter distributions that are

close to the size distributions of the forest-inventory

initialization. In the case of the Radar initialization (Fig.

6C), the resulting forest structure has 22% and 11% of

its basal area located in the .60-cm- and .100-cm-

diameter class ranges. In the Lidar-derived initialization

(Fig. 6D), 25% and 17% of the basal area is located in

the .60-cm- and .100-cm-diameter class ranges. Note

however that while both the Radar-derived and Lidar-

derived initializations significantly constrain the above-

ground ecosystem structure, neither correct for the

inaccurate distribution of trees across successional types

in the PV simulation (as indicated by the color of the

trees and the color of the bars of the basal area and

AGB distributions in Fig. 6).

FIG. 3. Flow chart illustrating the ED2 biosphere model simulations performed in this study, and the integration of Radar and
Lidar data into the model. The circled numbers 1 and 2 are reference points for simulations described elsewhere in the paper.
Abbreviation key: AIRSAR, airborne synthetic-aperture radar; LVIS, laser vegetation-imaging sensor; AGB, aboveground
biomass; RH100, maximum canopy height; a, time since last disturbance; t0, time at beginning of simulation.
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Dynamics of forest structure

Trends in ED2 model simulations of the aboveground

biomass, vegetation height, basal area, and leaf-area

index (LAI) from 2004–2008 after being initialized with

the potential vegetation, radar, lidar and forest-inven-

tory data sets in 2004 are shown in Fig. 7A.

The PV initialization produces AGB values that are

considerably higher than those obtained from the model

with forest-inventory observations (;24.3 kg/m2 vs.

;12.5 kg/m2 respectively) (Fig. 7A, first row). In

contrast, the Radar-initialized simulation has AGB

values closer to those obtained from forest-inventory

initialization, with an average AGB of 15.5 kg/m2 over

the observation period, and with an average difference

of 21% compared to 90% for the potential-vegtation

simulation. The Lidar-initialization yields a more

modest improvement to the AGB dynamics with an

average difference of 54%, and average AGB values of

19.5 kg/m2.

FIG. 4. Flow chart illustrating the ED2 simulations performed in order to correct for (A) composition, and for (B) composition
and structure. The circled numbers 1 and 2 are reference points from the flow chart in Fig. 3.

FIG. 5. Distribution of (A) aboveground-biomass (AGB) values and (B) canopy-height values. Initializing the ED2 terrestrial
biosphere model with known forest-attribute distributions required adjusting the equilibrium-run distributions to the Radar- and
Lidar-derived biomass and canopy-height distributions.
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In comparision to the dynamics of AGB, the canopy-

height dynamics obtained from the PV initialization

estimations are close to those output from the forest-

inventory initialization (compare red and blue lines in

Fig. 7A, second row). Canopy-height values in the

forest-inventory simulation are, on average 22.5 m,

compared to around 23.2 m in the PV simulation, a

difference of only 3.2% over the simulation period. In

the Lidar-initialized simulation (green in Fig. 7A,

second row), this discrepancy is reduced slightly, to

only 1.9%. In contrast, the Radar initialization yields

canopy-height values that are further from the forest-

inventory initialized simulation than the PV simulation,

with values that on average are 1.8 m (9%) lower than

the forest-inventory initialization. A primary reason for

the poor performance of the AGB initialization for the

average height simulations is the large variance in AGB

and height relationships.

The dynamics of basal area (BA) are similar to those

of AGB values derived from Radar and Lidar initiali-

zations, with average differences of 14% and 36%,

respectively, compared to the forest-inventory initializa-

tion. The difference between the potential-vegtation

simulation and the forest inventory is again the largest,

with differences of up to 70% (Fig. 7A, third row). The

LAI is the only metric in Fig. 7A where the Radar and

FIG. 6. For the beginning of each of the four simulations, dbh classes for basal area (BA) (middle column) and for aboveground
biomass (AGB; right column) are presented. Ray-tracing visualizations (left column) of the cohorts (tree crowns) are also presented
with the color coding corresponding to the succession stage. The Radar- and Lidar-initialized simulations are compared to the
potential-vegetation (PV) simulation begun in 1500, and to the simulation initialized from the forestry-inventory data.
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Lidar initializations do not substantially constrain the

PV simulation, but rather there is a small rise in LAI of

about 0.45 m2/m2 from the PV dynamics.

Forest structure from data-fusion methods

In the first fusion initialization approaches described

in Model and methods: Data fusion, above, Radar and

Lidar information were combined with the forest-

composition information from the forest inventory in

order to better constrain the model’s predictions. The

new Radar and Lidar composition-corrected initializa-

tions now have the same structure, but with composition

that matches that found in the forest inventory (Fig.

6A). The actual composition of the forest is 85–90%

early successional, with most of the rest belonging to the

mid-successional functional type. This forest-composi-

FIG. 7. Direct forest-structure variables plotted from 2004–2008 for aboveground biomass (AGB), vegetation height, basal
area (BA), leaf-area index (LAI), and a carbon-flux variable: net carbon primary production (NPP). The Radar- and Lidar-
initialized simulations are compared to the potential vegetation (PV), and to the initialization from field data. The ecosystem-
dynamics results are from the three data-assimilation methods; the columns present three runs: (A) original Radar- and Lidar-
initialized simulations; (B) composition-corrected Radar- and Lidar-initialized simulations; and (C) composition-corrected and
fine-scale structure-corrected Radar- and Lidar-initialized simulations. Details on the correction methodologies are given inModels
and methods: Data fusion.
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tion correction is illustrated in Fig. 8A and B. In the

second fusion approach described in the Data fusion
section (above), Radar and Lidar information was fused

with the forest inventory in order to tie in height and

biomass across space, with the fine-scale distribution of
height and biomass across size classes. The fused Radar

and Lidar–forest-inventory initializations (Fig. 8C, D),

now have both forest structure and composition very
close to the forest-inventory initializations (Fig. 6A).

The stand is ;85–90% early successional for both

remote-sensing fusion initializations, with Radar and
Lidar AGB on average 1.7 and 0.3 kg C/m2 different,

respectively, from the original forest-inventory-derived

AGB values.

Dynamics of forest structure from data-fusion methods

Fig. 7B, top row, shows the AGB dynamics obtained

from Radar and Lidar initializations that are corrected

for forest composition. The patterns through the period

indicate a decrease in AGB by ;14% for the Radar and

28% for the Lidar composition-corrected runs. Fig. 7C,

top row, shows the AGB dynamics obtained when the

Radar and Lidar initializations are corrected for both

forest composition and fine-scale canopy structure using

the remote-sensing–forest-inventory fusion method.

This yields AGB values for the Radar and Lidar fused

initializations to be on average 13% and 2% higher,

respectively, than the forest-inventory plots.

FIG. 8. Ray tracing stand visualizations with their corresponding aboveground-biomass distribution with dbh size classes. The
(A) Radar and (B) Lidar composition corrections result from the re-initialization-model output from the simulations described in
the flow chart (Fig. 4A). The subsequent (C) Radar and (D) Lidar composition-and-structure corrections result from the restart-
model output from the simulations described in the flow chart (Fig. 4B).
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Application of the composition correction to the

Radar- and Lidar-initialized simulations significantly

changes the dynamics of canopy height (see Fig. 7B,

second row). While the canopy-height values obtained

from the PV-initialized simulation remain close to the

forest-inventory initialized simulation, in both the com-

position-corrected Radar and composition-corrected

Lidar simulations, average canopy height increases by

;10–13%, a dynamic that is more consistent with the

canopy-height dynamics seen in the forest-inventory-

initialized simulation (Fig. 7B, second row). This

contrasts with the original Radar- and Lidar-initialized

simulations in which canopy height remained stable or

increased slightly over the four-year simulation period

(Fig. 7A, second row). In addition, the composition-

corrected Radar simulation is closer to the forest-

inventory simulation than the composition-corrected

Lidar simulation, with an average difference of 1.5%
compared to the forest-inventory-initialized simulation

(Fig. 7B, second row). This pattern is reversed, however,

in the composition- plus structure-corrected Radar and

Lidar simulations (Fig. 7C, second row). In these

simulations the canopy-height dynamics in the composi-

tion- plus structure-corrected Lidar simulation differs

,1% from the field-inventory-initialized simulation, while

the composition-and-structure-corrected Radar simula-

tion is ;7% greater than field-inventory initialization.

Application of the composition correction to the

Radar- and Lidar-initialized simulations also significantly

improves the model’s basal-area dynamics (Fig. 7B, third

row). Both the composition-corrected Radar and com-

position-corrected Lidar simulations yield basal areas

that are closer to the forest-inventory-initialized simula-

tion by around 8% and 11%, respectively. As with AGB,

the trajectories of basal area (BA) over the simulation

period are also closer to the forest-inventory-initialized

simulations. While in the original Radar- and Lidar-

initialized simulations BA remained near constant over

the four-year simulation (Fig. 7A, third row), BAvalues

now decline by ;10–15% over the course of the

simulation, a dynamic that is more consistent with the

dynamics seen in the forest-inventory-initialized simula-

tion (Fig. 7B, third row). The composition and structure-

corrected Radar and Lidar simulations are closer still

with BA values (Fig. 7C, third row) that are, respectively,

10% greater and 4% lower than the forest-inventory

simulation.

The dynamics of leaf-area index (LAI) in the

composition-corrected Lidar and Radar simulations are

shown in Fig. 7B, fourth row. In contrast to the earlier

Radar and Lidar initialized simulations in which LAI

dynamics were not improved over the PV (potential-

vegetation) simulation, application of the composition

correction in both Radar and Lidar initializations

improved the dynamics of LAI. In both simulations,

the initial LAI is still significantly overestimated (LAI of

6.5 vs. 4), but then declines to around 5, while the forest-

inventory-initialized simulation LAI is between 4.1 and

3.9 over the course of the simulation. Applying the

composition and structure correction in Radar and

Lidar–field fusion further corrects the LAI. The initial

Radar and Lidar LAI values differs by 0.7 and 0.3,

respectively, from the forest-inventory simulation, but as

the simulation continues, these LAI values increase to

around 4.8 and 4.6, respectively (Fig. 7C, fourth row).

Forest growth and mortality

The dynamics of growth and mortality for all

simulations are shown in Fig. 9. As Fig. 9A, top row,

shows, the rate of basal-area (BA) growth in the forest-

inventory-initialized simulation (red line) increases

markedly over the simulation period from 0.4

m2�ha�1�yr�1 to 2.3 m2�ha�1�yr�1 while in the potential-

vegtation (PV) simulation BA growth remains at a near

constant value of 1.6 m2�ha�1�yr�1 throughout the

simulation period (blue line). Both the Radar-initialized

(purple dotted line) and Lidar-initialized (green dashed

line) simulations exhibit patterns of growth that are

largely unchanged from that of the PV simulation, with

near-constant growth rates of 2.1 and 1.6 m2�ha�1�yr�1,
respectively, throughout the simulation. Application of

the composition correction (Fig. 9B, top row) results in

a slight increase in BA growth to the Radar-initialized

and Lidar-initialized simulations; but, in both, the rate

of growth remains too high. However, application of the

composition and structure correction to both the Radar-

initialized and Lidar-initialized simulations (Fig. 9C, top

row) yields dynamics that closely follow the pattern of

increasing BA growth observed in the forest-inventory-

initialized simulation (Fig. 9C, top row).

With regard to mortality dynamics, the forest-

inventory-initialized simulation (red line) has a high

rate of BA mortality of ;3 m2�ha�1�yr�1 during the first

two years of the simulation, which then declines to ;1.6

m2�ha�1�yr�1 during the second two years of the

simulation. In contrast, the PV simulation (blue line)

has a low, and relatively constant rate of basal area loss

of ;1.2 m2�ha�1�yr�1. Initialization of the model with

either the Radar and Lidar (purple line and green lines)

does not significantly change the pattern of BA

mortality from the pattern seen in the PV simulation.

In both simulations mortality is slightly higher than the

PV results due to the shifting of forest structure to the

smaller diameter-size classes, and the resulting increase

in the proportion of early successional trees in the model

simulation, which have higher rates of mortality than

the mid- and late-successional plant functional types. As

seen in Fig. 9B, bottom row, application of the

composition correction results in a marked increase of

BA mortality in the Radar-initialized simulation during

the second year of the simulation (purple dotted line),

and a marked increase in the mortality in the Lidar-

initialized simulation during the third year of the

simulation (green dashed line). Applying the composi-

tion and the structure correction to the Radar- and

Lidar-initialized simulations results in BA mortality
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dynamics that are very similar to the forest-inventory-

initialization simulation (Fig. 9C, bottom row).

Carbon fluxes

Fig. 7, bottom row, shows the dynamics of net

primary production (NPP) calculated as gross primary

productivity minus autotrophic respiration, for the

potential-vegtation, forest-inventory and Radar- and

Lidar-initialized simulations. As can be seen in the

figure, the NPP resulting from the forest-inventory-

initialization simulation (red line) is around 1.9–2 kg

C�m�2�yr�1, while the NPP of the PV simulation (blue

line) is ;17% lower at around 1.65–1.7 kg C�m�2�yr�1.
Both the Radar- and Lidar-initialized simulations

(purple and green lines respectively) have NPP values

that are closer to the forest-inventory-initialized simu-

lation than the PV simulation with values around 2.1–

2.2 and 1.73–1.77 kg C�m�2�yr�1, respectively, which are,

on average, 7% and 13% different, respectively, than the

forest-inventory-initialized NPP values.

Applying the composition correction to the Radar-

initialized simulation produces only a slight change in

the NPP dynamics (compare the purple lines in Fig. 7A

and B, bottom row), increasing the NPP by ;3%.

Applying the composition correction to the Lidar-

initialized simulation produces a 22% increase in NPP

(compare the green lines in Fig. 7A and B, bottom row.

Correcting the Radar-initialized simulation for both

composition and structure results in little change in the

Radar-initialized simulation. (compare the red lines in

Fig. 7A and C, bottom row ); however, correcting the

Lidar- initialized simulation for both composition and

structure reduces its NPP (compare the green lines in

Fig. 7B and C, bottom row) yielding NPP values closer

to the forest-inventory initialization.

DISCUSSION

This study has shown how estimates of aboveground

biomass (AGB) and canopy height (H ) obtained from

Radar and Lidar active remote-sensing measurements

can be used to constrain the predictions of terrestrial

ecosystem and biosphere models. Radar backscatter

intensity has been widely used to estimate AGB (e.g.,

Quiñones and Heokman 2004, Saatchi et al. 2007, 2010),

and Lidar signals have been widely used to determine

canopy heights (e.g., Dubayah and Drake 2000, Popescu

et al. 2003, Sun et al. 2008), but the use of such products

to constrain terrestrial ecosystem and biosphere model

predictions of ecosystem dynamics and ecosystem func-

tion is still in its infancy. As shown here, the use of Radar

and Lidar information to initialize terrestrial ecosystem

and biosphere models is important because those

measurements provide information about the actual

vegetation structure present at a given location rather

than assuming, as is current practice, that vegetation is

simply in equilibrium with its current climate and

disturbance forcing. In doing so, active remote-sensing

estimates of forest structure supply important constraints

FIG. 9. Basal-area tree growth (BA gained; top row of panels) and mortality (BA lost; bottom row) for the simulated period.
(A) Growth and mortality from the four original plots. (B) Growth and mortality values for Radar and Lidar initializations
corrected for forest composition in order to match the true composition in the field. (C) Growth and mortality values where the
Radar and Lidar forest information is fused with the field data so that they match the structure and composition of the field. The
calculated increment is the value obtained from field measurements of all trees in a 1-ha plot measured in 2004 and 2007.
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on terrestrial ecosystem and biosphere model predictions

of current and future ecosystem structure and function by

reducing initialization error. As described in the

Introduction (above), the scientific value of reducing the

model-initialization error is that it constrains the value of

key unknown model state variables at the beginning of a

simulation, and by doing so, can improve model

predictions and facilitate the identification and correction

of process-level errors in the underlying model formula-

tion. Specifically, the analyses conducted here for the La

Selva Tropical Forest (Costa Rica) showed how Radar

and Lidar data indicate a lower number of larger trees

than was estimated by a potential-vegtation (PV)

simulation, and that incorporating this information into

the model initialization yields a model whose vegetation

structure more closely matched the observed size-class

distribution of the forest. They also significantly con-

strained the dynamics of AGB, basal area (BA), and net

primary production (NPP) through the five-year simu-

lated period. The Radar and Lidar initializations did not,

however, decrease the dominance of late-successional

functional types in the PV simulation, since they only

provide structural rather than compositional informa-

tion. As our subsequent simulations showed, when Radar

and Lidar information on forest structure was combined

with forest-inventory information on forest composition,

this resulted in further constraining of the AGB, BA, and

even leaf-area index (LAI) as a result of better-

constrained mortality patterns. To quantify the remaining

error in the model initialization, we performed a more

complete large-scale to fine-scale fusion of Radar and

Lidar with the forest inventory to best represent the forest

structure and composition. This final approach yielded a

forest structure, composition, and dynamics that were

closest to the forest-inventory-initialized simulation.

These results suggest that, with current technologies,

more accurate estimations of changes in carbon stocks

and fluxes for any site requires fusion of hectare-scale

information on forest structure with information on fine-

scale forest structure. Further details and explanations of

these general findings are given below.

Initializing with the Radar and Lidar reduces the

abundance of tree sizes in larger size classes, more closely

reflecting the forest-inventory tree size distributions, and

this improves the dynamics of forest structure. This is

because the distributions of AGB and canopy heights

were different for the PV simulation and the Radar- and

Lidar-derived variables (Fig. 5). Understanding the

genesis of the differences in these distributions provides

insight into process-level errors in the model formulation.

The distributions of AGB and canopy heights in the

potential-vegtation (PV) simulation were both negatively

skewed (Fig. 5). The reason for this is that the PV

simulation assumes, for simplicity, a constant, spatially

uniform, rate of canopy-gap disturbance, resulting in an

exponential distribution of times since disturbance (see

Model and Methods: ED2 biosphere model, above). Since

both AGB and height increase approximately monoton-

ically with time since disturbance, this results in both

quantities having distributions that are also skewed

towards larger size classes. In contrast, the distributions

of AGB and canopy heights derived from both Radar

and Lidar measurements are more normally distributed.

Several factors account for this difference. First, evidence

suggests that the rate of disturbance increases as a

function of canopy age (Richards 1952, Whitmore 1982,

Johnson et al. 1995). The consequence of this effect is to

truncate the long tail in the height and diameter

distributions on the landscape that would otherwise have

arisen as it does in the PV simulation. In future analyses,

the recent availability of disturbance-dynamics data sets,

such as that from the Landsat archive (e.g., Ferraz et al.

2009, Li et al. 2009, Huang et al. 2010), offers a promising

way to more accurately specify the history of disturbance

within a given ecosystem. A second factor is that the

distributions of Radar-derived AGB and Lidar-derived

heights reflect spatial variation in these quantities at the

hectare scale (;100 m) while the distribution in PV

simulation reflects the spatial variation at the scale of

canopy tree gaps (;10 m). The Radar and Lidar

distributions thus average over the canopy gap-scale

distribution present in the PV simulation.

As Fig. 6 also shows, associated with the errors in

forest structure in the PV simulation are errors in

composition. Specifically, as would be expected given

the historical disturbance regime in the PV simulation, it

has an excess of late-successional trees and insufficient

abundance of early successional trees, compared to the

forest inventory (compare Fig. 6A and B). The improved

representation of forest structure following initialization

with the Lidar and Radar data partially reduces the

canopy-composition error by increasing the abundance

of early successional trees (see Fig. 6C, D); however,

errors in composition still remain.

To quantify the effects of the remaining error in forest

composition, we evaluated a fusion approach that used

information on composition from the forest inventory

to produce composition-corrected Lidar and Radar

initializations (see Fig. 8A, B), with a dominance of

early successional trees (;87% of the basal area) similar

to the forest inventory. Both composition-corrected

Radar- and Lidar-initialized simulations resulted in

more realistic canopy dynamics compared to the forest-

inventory dynamics. These more realistic canopy

dynamics can be explained by composition-corrected

mortality patterns that more closely fit the forest-

inventory mortality dynamics. Here, Radar and Lidar

composition-corrected initializations give rise to marked

increases in mortality in the second simulation year (;6

m2�m�2�yr�1; Fig. 9B), similar to the forest inventory.

This is a result of increasing the proportion of early

successional trees, which have higher rates of mortality

than later functional types due to their lower wood

density (Moorcroft et al. 2001, Muller-Landau 2004,

King et al. 2006).
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In the second fusion approach, we combined Radar

and Lidar information on large-scale forest structure

with the fine-scale information on forest structure and

composition from the forest-inventory measurements.

This approach, not surprisingly, yields a forest structure,

composition, and dynamics that were closest to the

forest-inventory-initialized simulations, with all vari-

ables considered being ,20% different from the forest

inventory, (see Figs. 7C and 9C). As these figures show,

the dynamics arising from this second fusion method are

similar to, but different from, those produced by the

forest-inventory-initialized simulation, thereby illustrat-

ing how the remote-sensing data bring additional

information regarding the large-scale spatial structure

of the forest that is not captured in the 7.5 ha of forest-

inventory plots. These results imply that techniques that

combine information about forest structure collected at

different spatial scales offer the most promise for

providing an accurate quantification of aboveground

ecosystem state. As shown here, this can be achieved

either by fusion of Lidar and Radar data collected at a

relatively coarse (1-ha) scale with ground-based forest-

inventory data. An interesting topic for further study is

whether similar results can be obtained by fusion of

hectare-scale Lidar and Radar data with active remote-

sensing measurements of sub-hectare variation in

canopy structure.

An important question for understanding the terres-

trial carbon cycle is whether active remote-sensing

estimates of forest structure can sufficiently constrain

the carbon dynamics of the ecosystem. In this study, we

focused on net primary productivity, since NPP is the

key diagnostic of the carbon dynamics of the above-

ground ecosystem, and unlike net ecosystem productiv-

ity, NPP is not affected by magnitude of the

belowground soil carbon pools. For the original four

simulations, the Radar and Lidar initializations appear

to constrain the PV simulation by raising the annual

NPP towards that of the forest-inventory initialization.

However, this constraining of Radar- and Lidar-

initialization NPP values from the PV simulation

actually arose from a fortuitous compensating error.

The potential-vegtation (PV) simulation had a signifi-

cantly higher LAI and total aboveground biomass

compared to the forest-inventory–initialized simulation

(see Fig. 7A, first and fourth rows), but its resulting NPP

is significantly lower than the NPP of the forest-

inventory-initialized simulation (see Fig. 7A, bottom

row). This apparent paradox can be explained by

considering how the LAI and AGB are distributed

across size classes. As noted earlier, the PV simulation

results in a forest that contains an excess of late-

successional trees. This larger proportion of late-

successional trees reduces NPP because of their lower

photosynthetic capacity compared to earlier succession-

al trees (see Moorcroft et al. 2001), and this exceeds the

increased photosynthesis that arises from the increased

LAI.

As seen in Fig. 6, initialization with either the Radar

AGB or Lidar height data partially reduces the excess

proportion of late-successional trees in the canopy, and

by doing so, increases the NPP in the Radar- and Lidar-

initialized simulation towards that seen on the forest-

inventory-initialized simulation. However, as discussed

earlier, both the Lidar and Radar initializations also

result in an excess of smaller sized trees (see Fig. 6). In

the ED2 terrestrial biosphpere model, canopy-scale NPP

is higher when trees are smaller, primarily because of

decreased respiration costs per unit AGB in smaller trees

compared to larger trees. Note that this mechanism is in

accordance with observations (e.g., Mäkelä and

Valentine 2001); however, there is also evidence that

other mechanisms, such as increased nutrient availabil-

ity and the absence of reproduction can also contribute

to the higher productivity of younger, smaller-statured

stands (Ryan et al. 1997). Thus the excess of abundance

of smaller-tree size classes has the effect of further

increasing the canopy-scale average NPP. In other

words, the error in the size distribution compensates

for error in the NPP arising from the over-abundance of

remaining late-successional trees in the Radar- and

Lidar-initialized simulations. A follow-on consequence

of this is that the mismatch between the composition-

corrected Radar and the forest-inventory-initialized

simulation is larger than the mismatch between the

Radar-initialized simulation and the forest-inventory-

initialized simulation, because it removed the partially

compensating reduction in NPP values that arose from

having more late-successional tress than is actually

observed. This same phenomenon also occurs when

comparing the composition-corrected Lidar simulation

vs. the Lidar-initialized simulation.

This study has demonstrated the ability of large-

footprint airborne Lidar and Radar in obtaining forest-

structure data at an appropriate scale in order to

constrain predictions on forest ecosystem structure and

function. At least for the tropical forest considered here,

the Radar-initialization data consisting of a P-band-

derived estimate of the spatial distribution of above-

ground biomass (AGB) provides a better constraint on

the model’s dynamics that the Lidar-derived initializa-

tion via canopy that utilizes the spatial distribution of

canopy heights. This is particularly true especially

concerning the distribution of biomass and basal areas

across tree-diameter classes. The Radar initialization

correctly reduces the amount of basal area to the first

60-cm size classes and lower overall basal area and

biomass compared to the Lidar-based initialization.

Moreover, as seen in Fig. 7B, the composition-corrected

Radar simulation is more similar to the dynamics of the

forest-inventory-initialized simulation than the compo-

sition-corrected Lidar simulation even for canopy

height. This is likely due to the fact that P-band Radar

estimates of forest biomass are based on a signal that

interacts not only with the dominant and tallest trees,

but also with the lower canopy and understory. In
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contrast, the Lidar RH100 maximum-canopy-height

estimate is unaffected by the presence or absence of

the smaller-sized trees that are below the dominant

crown. Interestingly, however, when combined with

forest-inventory data on fine-scale structure, the Lidar-

derived initialization is better than the corresponding

Radar-derived initialization (see Fig. 7C).

The results from this study suggest that Radar- and

Lidar-derived estimates of forest-canopy structure from

future satellite missions such as the DESDynI

(Deformation, Ecosystem Structure and Dynamics of

Ice) mission (information available online)5 will provide

a unique, spatially consistent, source of information on

aboveground ecosystem structure that can be used to

constrain terrestrial ecosystem and biosphere models at

global scales. An important future research direction

will be to evaluate methods that exploit the comple-

mentary information on forest structure that Lidar and

Radar provide. In particular, since Lidar is a near-nadir

technique, it is sensitive to height and vertical profile of

the forest while Radar measures reflected pulses at off-

nadir and is sensitive to wood volume and density.

Another interesting avenue for future work is investi-

gating fusion methods that combine active remote-

sensing wall-to-wall estimates of forest structure collect-

ed at hectare scales with active remote-sensing samples

of sub-hectare canopy variation. As shown here, and by

Thomas et al. (2008), for terrestrial biosphere models

such as ED2 that track fine-scale spatial heterogeneity in

ecosystem structure, incorporating information on

large-scale and fine-scale ecosystem heterogeneity is

critical for accurate prediction of the ecosystem’s

subsequent dynamics. Finally, as the results here

suggest, from the perspective of constraining the

dynamics of terrestrial biosphere models with remote-

sensing measurements, an important next step is

evaluating fusion methods that combine full-signal,

active remote sensing of forest structure with hyper-

spectral measurements of forest composition in order to

simultaneously constrain both the forest’s structure and

its composition (e.g., Treuhaft et al. 2004, Asner et al.

2008, Asner and Martin 2009).
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