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Abstract Mechanistic home range models are important tools in modeling animal
dynamics in spatially complex environments. We introduce a class of stochastic mod-
els for animal movement in a habitat of varying preference. Such models interpolate
between spatially implicit resource selection analysis (RSA) and advection-diffusion
models, possessing these two models as limiting cases. We find a closed-form solu-
tion for the steady-state (equilibrium) probability distribution u* using a factorization
of the redistribution operator into symmetric and diagonal parts. How space use is
controlled by the habitat preference function w depends on the characteristic width
of the animals’ redistribution kernel: when the redistribution kernel is wide relative to
variation in w, u* o w, whereas when it is narrow relative to variation in w, u* o w?.
In addition, we analyze the behavior at discontinuities in w which occur at habitat type
boundaries, and simulate the dynamics of space use given two-dimensional prey-avail-
ability data, exploring the effect of the redistribution kernel width. Our factorization
allows such numerical simulations to be done extremely fast; we expect this to aid the
computationally intensive task of model parameter fitting and inverse modeling.

Keywords Mechanistic - Home range - Advection—diffusion - Resource selection
analysis - Markov - Space use

Mathematics Subject Classification (2000) 92D50 - 35K15 - 65C20

A. H. Barnett (X))

Department of Mathematics, 6188 Kemeny Hall,
Dartmouth College, Hanover, NH 03755, USA
e-mail: ahb@math.dartmouth.edu

P. R. Moorcroft

OEB Department, Harvard University, 22 Divinity Ave,
Cambridge, MA 02138, USA

@ Springer



140 A. H. Barnett, P. R. Moorcroft

1 Introduction

Due to the influences of habitats on the availability of food, shelter, mates and risk
of predation, patterns of animal space use are strongly shaped by the spatial distribu-
tion of habitat types across landscapes. Revealing these effects is key for ecological
studies, wildlife management, and conservation efforts. A popular technique for ana-
lyzing such relationships between habitats and patterns of animal space use has been
resource selection analysis (RSA) [3,10,13], in which the intensity of space use is
taken to reflect an underlying resource selection function summarizing an individual’s
preference for the habitat type(s) found at that location.

Recently an alternative framework has emerged in the form of mechanistic home
range models [12,17,18]. In contrast to RSA, which is largely descriptive and takes
into account the effects of finite movement speeds only implicitly, mechanistic mod-
els yield spatially explicit predictions for patterns of animal space use in the form
of a probability density function (pdf), by modeling the process of individual move-
ment. Mathematically, the fine-scale behavior of individuals is treated as a stochastic
(Markov) process [11,19,21,23], specifying the probability of an animal at a given
location moving to a subsequent location during a given time interval. From this model
one can derive, in the limit of small time intervals, a continuous-time partial differential
equation (PDE) for the evolution of the pdf. For example, a recent analysis of coyote
home ranges in Yellowstone [18] used a “prey availability plus conspecific avoidance”
(PA+CA) mechanistic home range model to account for the observed patterns of coy-
ote home ranges within the park. In this model, individuals exhibited an avoidance
response to encounters with foreign scent marks and a foraging response to prey avail-
ability (individuals decreased their mean step length in response to increasing small
mammal abundance in different habitats.) In such mechanistic models, inferences
about long-term space use are usually made by evolving the continuous-time PDE
in order to converge to its steady-state; this can be computationally time-consuming
[15,17].

In recent work [16], we developed a mechanistic home range model which rec-
onciles these two main approaches by combining the concept of a spatial preference
function w(x) with a stochastic model of fine-scale movement behavior. At each time-
step the movement of an individual is governed by its relative preference for the local
habitat surrounding its current spatial position i.e., the preference function restricted
to a region of size L centered on the individual’s current location. The length scale L
has two roles: it is the typical (jump) distance per time step, but also can be interpreted
as the distance over which the animal is able to perceive differences in surrounding
habitats. This new model, which we will call a mechanistic RSA, or MERSA model,
is compared against traditional RSA in Fig. 1, and detailed in Sect. 2.

In traditional RSA, available habitat is assumed to be a fixed area such as the study
area or an independent estimate of the animal’s home range. Our approach has some
aspects in common with more recent variants of RSA, which build on the work of
Arthur et al. [1], that instead define available habitat relative to the animal’s current
location. Recall that RSA is generally a statistical regression to reveal the factors which
determine space use relative to availability. These RSA variants restrict the definition
of available habitat to a buffer region centered on the animal’s current location: either
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(a) RSA (b) Proposed mechanistic model

Agwy
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a

Fig. 1 Schematic comparing conventional resource selection analysis (RSA) against our proposed model
for space use, in two dimensions. Shaded regions show areas of habitat in which the preference function
w(x) is constant. a Traditional RSA. The probability of finding an animal in each region is proportional to
the product of preference (resource selection function) w; and area of the region A ;. There is no account
taken of the animal’s current habitat type or location within the habitat. b Proposed MERSA model for
space use. The animal responds only to the preference function within a distance scale L from its current
location (black dot). Each time step the future location (white dot) is chosen randomly from a localized
distribution biased by the preference function

uniformly sampled discs [1,2,4,9], or nonuniform sampling according to a known
redistribution kernel [6]. Thus some movement model (i.e., upper limit or pdf on
travel distances between sample times) is implicitly assumed, but rarely explicitly
described, and not fitted for within the regression framework, nor explored in terms
of its predictions for evolution of space use.

Although our mechnistic jump length L has similarities to this buffer size, our
framework is different. It combines jump step length, direction, and local habitat pref-
erence bias into a single probabilistic model of fine-scale movement behavior, from
which we can derive mathematically the pattern of space use that results from the
underlying movement process. Our ultimate goal is then to perform inference (fitting
for all parameters and comparing models) given location data, for instance extending
the approach of Forester et al. [5]. In this preliminary paper we explore model predic-
tions in various preference environments, and leave inference from real-world animal
location datasets for future work.

Our main result in [16] was to show that, in one dimension (1D) with a spatially
smooth habitat preference function, using the Kramers—Moyal expansion ([7,16] and
Appendix A and E of [17]) one may derive an an advection—diffusion equation for
the expected patterns of space use, with advection and diffusion coefficients related
to the parameters of the underlying stochastic movement model. We then showed that
the resulting steady-state pdf could be determined analytically, giving an intensity of
space use proportional to the square of the preference function.

In this paper we expand and generalize this result to the more biologically rele-
vant case of individuals moving in two space dimensions across landscapes, which
may include discrete habitat types and the resulting non-smooth preference function.
Specifically, in Sect. 3 we solve for the steady-state pdf of our discrete-time sto-
chastic model of fine-scale movement behavior directly and analytically, for arbitrary
preference functions, without resorting to the conventional procedure of taking the
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continuous-time limit.! (Note that this relies on a particular algebraic feature of our
model; for a general redistribution kernel such an analytic solution is not available.)
By doing so, we are able rapidly to compute exact steady-state space use patterns for
the model for a full range of possible length scale values L, rather than being confined
to the limit of small L inherent in a PDE-based approach. We also gain an understand-
ing of the numerically observed pdf behavior at jumps in preference function, which
had remained a mystery [16]. A consequence of our solution is that the computa-
tionally intensive task of solving an inverse problem to fit multiple model parameters
can become orders of magnitude faster. We discuss such numerical implications in
Sect. 3.1, and give CPU timings for our numerical examples throughout.

For illustrative purposes, we choose a translationally invariant exponential distribu-
tion of jump lengths, a kernel which has proven useful for modeling coyote foraging
movement [17]. However, our analytic solution holds for any redistribution kernel,
also for a generalization of the model of [16] to spatially varying diffusion coeffi-
cient (spatially dependent length scale L) such as occurs in modeling the prey-density
dependent foraging rate of wolves and coyotes [12,18,24]. In Sect. 4.1 we explore the
transition from small L (where the model tends to the advection—diffusion equation
derived in [16]), to large L (where the model becomes equivalent to traditional RSA).
Here “large” and “small” are in comparison to the typical spatial scale on which the
preference function changes. In Sect. 4.1 we explore this numerically both in 1D, and
with a 2D preference function derived from discontinuous real-world small mammal
abundance data appropriate for coyotes. In Sect. 4.2 we show rapid and efficient numer-
ical simulation of the time evolution of the pdf. Furthermore in Sect. 5 we analyze
the behavior at a sharp discontinuity in preference function, and show that on spatial
scales larger than L this effect may be approximated by effective matching conditions
in coupled advection-diffusion equations. Finally in Sect. 6 we discuss implications
and draw conclusions.

2 Mechanistic spatially explicit (MERSA) model

The time-dependent pdf of an animal we will represent by u(x, t), where x € £2 is
the location, £2 C R¥ represents the habitat region or study area of interest, and d is
the dimensionality of space (usually 1 or 2). Thus, in a 1D setting, u(x, t)dx is the
probability that at time ¢ a given individual is to be found in the interval [x, x + dx].
(Note in 2D we use x rather than x to represent location vector.) Its normalization is

/u(x,t)dx =1 forallt (1

22

! One may ask whether discrete or continuous time is more appropriate for animal movement model-
ing. Clearly in reality animals move in continuous time, however a continuous-time diffusion equation
(Brownian process) cannot be realistic on the shortest time-scales for the simple reason that this would
require infinite movement speed (e.g., see [20]). Therefore models with a fixed discrete time step remain
crucial for fine-scale modeling.
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Analytic steady-state space use patterns 143

Our MERSA model is an example of a Markov process. At each time step of length
7 the current pdf at time ¢ is acted on by a fixed linear operator to get the pdf at time
t + 7. This is expressed by the master equation

u(x,t+1) = /k(x, Nu(x',0dx’  forx € 2 )
2

Given an initial pdf u(x, 0) = up(x) for all x € £2, by iteration the pdf at arbitrarily
large future times (multiples of 7) may be computed. Here the redistribution operator
kernel k(x, x") is defined as the conditional pdf of an individual animal’s location
x, a time interval 7 into the future, given that its current location is x’ .2 This is an
uncorrelated jump or “kangaroo” process [20] in which the animal has no memory
beyond the fixed time scale 7. Since a redistribution kernel is a conditional pdf it is
everywhere non-negative and (“columnwise”) normalized by

/k(x, xNdx =1 forallx’ € 2 3)
2

Clearly for a given ecological situation the choice of T determines the form of k(x, x”).
For example, shorter T may demand a smaller kernel width L simply because animal
speed is limited. By the length scale L we mean the typical size of |x — x’| for which
k(x, x’) is significant. We will not indicate explicitly the dependence on t of the form
of k. The appropriate value of T depends on the application; it needs to be large enough
that successive animal relocations can be approximately treated as uncorrelated [17].
Real-world location data collection technology also can be a factor if fine-scale model
fitting is to be done. For coyotes, a typical value of 7 is 10 min [17].

We consider a spatial preference (resource selection) function w € L'(£2) which
controls relative preference for each location in the domain. We represent unbiased
(“preference-free”) diffusive animal movement with a symmetric redistribution kernel
¢ (x, x), that is,

p(x,x)=¢(',x) forallx,x' € Q. @)

The kernel ¢ obeys the Markov normalization (3); from this and symmetry it follows
that

/qﬁ(x,x’)dx’ =1 forallx e 2 5)
2

which is the statement that a constant pdf is invariant under redistribution by ¢. Since
a uniform density gives no net probability mass flow, we say that (an operator with

2 Note that in the stochastic literature the order of x and x’ is often reversed [71.
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144 A. H. Barnett, P. R. Moorcroft

kernel) ¢ is advection-free. Our MERSA redistribution kernel & is this advection-free
jump kernel biased by the preference function, in other words,

_ w0, x)

k(x, x' 6
(x, x) ) ©)

with normalization function (easily seen to be required to satisfy (3)),
7(x") = / wxMNe ", xNdx". 7

2

For (6) to be meaningful we must have z > 0 everywhere; it is sufficient that w > 0
everywhere for this to hold, which we will assume from now on. Note that since
¢ (x, x’) may depend independently on x and x’ (barring the symmetry constraint),
it may represent a spatially varying (and also anisotropic) diffusion coefficient. The
MERSA model is thus more general than that of [16], which was restricted to the
translationally invariant case

¢ (x, x') = p(x — x). ®)

Here ¢(-) is a function of relative displacement alone, which limits one to a spatially
invariant distribution of step-lengths in the underlying stochastic movement model.

2.1 Limiting cases of the model

We now discuss two limiting forms of MERSA. Firstly, consider the case ¢ (x, x') =
1/vol(£2) for all x,x” € £2. This corresponds to preference-free redistribution to a
uniformly random location in §2, without regard to current location. (6) then becomes

w(x)

k(x,x ) = W

©)

Since this is independent of x’, within a single time step (and for all future time steps)
the master equation reaches its steady-state pdf u* := lim;_, o u(-, t) given by

u*(x) = Cyw(x),  with normalization constant Cl_1 = / wx"dx". (10)
2

This is formally equivalent to a conventional (time-invariant) RSA model, with lin-
ear dependence on preference. This assertion is illustrated when £2 is divided into
regions j = 1...m each of area A; and constant preference function w;, for then
(10) assumes the more familiar RSA form u; = Ajw; /(3 /., Axwk) where u;j is
the probability of being in region j [3,10,13], see Fig. la. In the case of an infinite
domain such as 2 = R4 (in which case w alone delineates the habitat) no constant
normalizable ¢ exists; however, the above result may be reproduced by considering
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the limit in which the kernel ¢ becomes much wider than all spatial scales of interest
in the habitat (L — 00). Then ¢ (x, x") tends to a constant for x and x’ within the
habitat, and (10) again follows. Thus for both cases above we will call this the L — oo
limit, and state that in this limit our MERSA model degenerates to traditional RSA
(i.e., no restrictions on available habitat).

Secondly, consider the L — 0 limit where k tends to a diagonal kernel. In order for
time evolution to take place at all, we must also take the limit T — 0. It is well known
[19,20] that the correct way to balance these two limits in order to reach a well-defined
diffusion coefficient is to choose the variance of the kernel k to scale as 7. In the 1D
case of smooth w, and a translation-invariant kernel (8), we have derived [16] that in
this limit our MERSA model gives a Fokker—Planck PDE with known advection and
diffusion coefficients. From this we showed that the steady-state pdf is

u*(x) = Cow?(x),  withconstant C, ' = / w?(x")dx", (11)
2

that is, quadratic in preference function. (The integral is bounded since w is smooth
and in L'(£2)). We note that in this Fokker-Planck limit, our model is equivalent to
that of [8] with the “potential” function U (x) = —2D log w(x) and constant diffusion
d(x) = D.

We will see in Sect. 4.1 how these differing L — oo and L — 0 steady-state limits
are reached in practice.

3 Analytic formula for steady-state pdf

The condition that u* be a steady-state pdf is that it be invariant under the master
equation (2), in other words,

u*(x) = /k(x,x/)u*(x’)dx’ for all x € £2. (12)
2

Our main result is the following claim.

Proposition 1 A steady-state pdf for the model redistribution kernel (6) is given by

u*(x) = Cw(x)z(x), with constant C~' = / w(xNz(x)dx', (13)
2

where the function z is defined by (7).
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146 A. H. Barnett, P. R. Moorcroft

The proposition is proved by substituting (6) and (13) into the right side of (12) then
noticing that z cancels, allowing the simplification

/k(x,x/)Cw(x/)z(x/)dx/ = C/w(x)(b(x,x/)w(x/)dx/

2 2

= Cw(x)/¢>(x’,x)w(x’)dx/
2

= Cw(x)z(x),
= u*(x), (14)

verifying (12). Crucially, it is the assumption that ¢ is symmetric that allows us to
proceed from the first to second line. Notice that once standard assumptions about
ergodicity are satisfied, the steady-state u* is unique (e.g., see Doeblin condition in
[14] p.396; in our ecological context this is satisfied since we can assume that there
is always some randomness to animal motion, i.e., the kernel ¢ is always somewhat
spreading at each spatial location). Since w is assumed to be everywhere positive, so
isu*.

We now derive some secondary results on the structure of k, giving intuition into
the reason for existence of the simple formula (13). They may be skipped if no further
mathematical insight is required. We switch to operator notation, expressing (12) as
u* = Ku* where K is a Markov operator. Recall that a Markov operator is an integral
operator with non-negative kernel obeying (3), which can be expressed K71 = 1
where 1 is the constant function and K7 the adjoint operator (with respect to uniform
measure). Our model (6) expresses the factorization

K=woz !, (15)

where @ is the (Markov) operator defined by the integral kernel ¢ (x, x’), and W and
Z are the diagonal operators which multiply by the functions w and z respectively.
Thus the structure is an operator with constant invariant measure sandwiched between
two diagonal operators. Note that z = @ w since @ is symmetric.

Then we have,

Proposition 2 With the assumption w > c everywhere, for some ¢ > 0, our model
Markov operator (15)

1. satisfies detailed balance, that is,
ke, xDu*(x") = k(x', x)u™(x)  forallx,x' € 2, (16)

2. s self-adjoint with respect to the measure 1/u*, and
3. has all eigenvalues real.

The proof'is as follows. We define U * to be the operator multiplying by the function u*;
it can be written U* = ZW. Using (15) gives KU* = W@ W, explicitly symmetric.
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In other words
(KUHT = KU*, (17)

which is equivalent to detailed balance (16). Now we use (-, -) to indicate the L?(£2)
(real) inner product with respect to uniform measure, and (-, -)1/,+ with respect to
measure 1/u*. Using (17) and the boundedness of 1/u* in the middle step we have

b b
(ava)l/u*Z(a*,KU*—*):(KU*i _)
u u

u*’ u*
= (Ka, b))+ foralla,b e L*(2) (18)

which proves part 2. Part 3 immediately follows by self-adjointness. We remark that
the simple formula (13) for u* can now be seen as a result of the need to symmetrize
the factorization (15).

3.1 Implications for fast numerical modeling

We discuss briefly why the above result is important in practice. The analytic steady-
state pdf formula (13) is special because for a general redistribution kernel no such
formula exists. In particular, there is no formula for #* for commonly used mechanis-
tic kernels such as those expressed in polar coordinates with exponential radial jumps
and a von Mises angular distribution [17, Chap. 3] In that work all steady-state dis-
tributions had to be computed in the advection—diffusion limit, often in a numerically
intensive fashion; see Appendix G of [17], and [15]. In fitting model parameters to
real-world location data, a large number of such steady-state pdfs must be found as
part of the parameter-optimization process (e.g., Sect. 4.3 of [17]).

Numerical solution of u* for any redistribution kernel requires discretization of
the domain into N degrees of freedom. In 2D the N required for acceptable accuracy
can be large (e.g., 10*). Solving for u* given a general kernel is then an eigenvector
problem involving a (possibly dense) N-by-N matrix discretization of that kernel. The
iterative solution of such large eigenproblems can be slow especially when diffusion
rates are small. In constrast, the formula (13) in our MERSA model bypasses this
and requires only the computational effort of the single matrix-vector multiplication
required to evaluate the (discretized) integral (7). This is an acceleration by orders of
magnitude.

There is a further numerical advantage to a special case of the MERSA model.
Namely if ¢ is translationally invariant (diffusion coefficient is spatially constant)
then the action of the (discretized) convolution operator @ may be computed in time
O (N In N) via the Fast Fourier Transform (FFT) [22], which for large N is much faster
than the O (N?) dense matrix-vector multiply. This further speeds up computing u* via
(7). Finally, the time-evolution u(x, t) can now be computed much more efficiently. A
single time-step of the master equation (2) may be performed with O (N In N) effort
by using (15) in a split-operator method: division by z, followed by FFT application
of @, followed by multiplication by w.
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148 A. H. Barnett, P. R. Moorcroft

We illustrate these numerical techniques and advantages below. All CPU timings
are reported using a single core of a 2 GHz Intel Core Duo processor running MATLAB
7.0 in GNU/Linux.

4 Numerical results for an exponential jump kernel

In this section we illustrate the predictions of our MERSA model for steady-state and
time evolution of space use for an idealized 1D preference function, and for a 2D
preference function that is based on spatially complex, real-world measurements of
prey abundance in different habitat types. Throughout we consider a translationally
invariant ¢ kernel, choosing an exponential kernel with width L, which takes the form
in 1D

. 1
— __leliL
Plp) = 5re (19)

where p := x — x’, and in 2D

1 e-lPl/L

() = ¢ (p)) = AT (20)

where we remind the reader that p is a vector in the latter. Note that the 2D kernel
is radially symmetric, and when integrated over angle it gives a distribution of jump
distances r := |p| which is exponential, (1/L)e"/L. The 2D kernel has been used as
a model of animal movement, for instance describing the fine-scale movement of coy-
otes with remarkable accuracy [17] (it also seems promising for modeling observed
relocation distances of elk [6, Fig. 1]).

4.1 Steady-state

Here we will assume the domain has periodic boundary conditions. It has the inter-
pretation that the piece of habitat §2 in question is surrounded by similar (repeating)
habitat, often a reasonable assumption. Mathematically this condition is achieved in
the case of the unit interval £2 = [0, 1) by replacing (19) by a sum over a few nearby
“image” kernels,

M

~ 1
$lo) =5 D et 1)

m=—M

where M is chosen such that ¢ is periodic to some high accuracy (e.g., 107°). An
analogous 2D image sum is used in the 2D case where 2 is a rectangle.

Note that our formalism can handle other boundary conditions. For instance we
model a standard zero-flux boundary in Sect. 4.2. We have also checked that the peri-
odic steady-state results are very similar to those for zero-flux, except when L is of
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order the size of the whole domain (In this case for zero-flux u™* is affected by the
effective boundary discontinuity in w, a complication which we will not pursue here).

4.1.1 One-dimensional case

In Fig. 2 we show u* computed via (13) and (7) for the exponential kernel, for an
ascending sequence of L values, in the unit interval. Our example preference function
w has been chosen to exhibit a variety of length scales: for x < 0.6 it is smooth,
corresponding to a gradation in habitat preference, whereas for x > 0.6 it is piecewise
constant with discontinuous oscillations between the values 1 and 2 corresponding to
isolated patches of more favorable habitat. The shortest length scale of w is 0.015,
namely the size of the smallest constant patch near x = 0.76. We see that for very
small L, u* accurately matches w? for all regions apart from those with the most rapid
w variations. This matches the expectation in Sect. 2.1.

A gradual transition is seen in the sequence of Fig. 2. As L becomes larger than a
given feature, u* in the vicinity of that feature starts to become locally proportional
to w. Finally in plot (f), L is larger than any feature and u* globally becomes linear

(a) L=0.005 (b)L=0.015 Al

N W s
N W s

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
p—— - 4 Pp— - ,
4 i(e) L=0.25 , = | ,r||r'|' ®) =1 | |r|l‘llI e ||
/ [ —_—
3 // | IIII ! 3 , | I|I| | | W2
/ ' ! / L L T B | i
Vs 7/
1 1
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Fig. 2 Steady-state pdfs u* for exponential jump pdf of (19) for an increasing sequence of L values.
The preference function w (thin solid line) is chosen to be smooth on the left side of the domain, and
discontinuous and oscillatory on the right side
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150 A. H. Barnett, P. R. Moorcroft

in w. The explanation for this transition is simple and lies with (13) combined with
the realization that the function z is given by the function w smoothed locally over
a width of about L. Fine (< L) features in w will thus be smoothed away giving a
locally constant z, whereas for coarse (> L) features z ~ w and quadratic dependence
in w results. This effect is common to any jump kernel with characteristic width L:
fine-scale habitat features result in u* o w, in accordance with the L — oo limit (10),
whereas coarse-scale habitat features are tracked according to u* o w?, in accordance
with the Fokker—Planck limit (11).

Since u* is computed analytically via (13), its numerical accuracy is limited only by
quadrature of the integral. We computed z using (7) via FFT convolution (Sect. 3.1) in
a few thousandths of a second on a uniform quadrature grid of N = 400 points. This
contrasts the order 1 s needed to iteratively solve for the dominant eigenvector of the
dense matrix discretization of @ that would be required if no simplifying factorization
of K or analytic solution for u* were known.

4.1.2 Two-dimensional case with real-world habitat heterogeneity

We start with the small-mammal density data B(x) shown in Fig. 3 where location x
was sampled on a 0.1 km grid over a 7 km x 12 km domain §2. This density is piece-
wise constant, being derived from measured prey densities (mice, ground squirrels,
pocket gophers and red-backed voles) appropriate for coyotes in six different habitat
types (see Chap. 7 of [17]). The main habitat feature is a strip of mesic grassland
(the darkest region in the figure), which follows a valley floor and supports a high

abundance of small mammals.
We use a linear relationship between prey availability and preference

wx) =14+ aB(x) forall x € £2 (22)

- 0.05
0.04
1 0.03
0.02

0.01

x (km) —0

Fig. 3 Small-mammal abundance for Lamar Valley region of Yellowstone National Park collected by
Crabtree et al. (unpublished); see Chap. 7 of [17]. Units are the total biomass density of small mammals
in kg/ha with darker colors indicating larger values. The x- and y-axes are in kilometers. The highest
abundances of small mammals are found in the mesic grassland habitats
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where « (units of ha/kg) controls the strength of the preference per unit of prey biomass.
The resulting steady-state pdfs u* are shown in Fig. 4. This shows the patterns of space
use for 3 different values of «, in combination with 3 different values of length scale
L (20). Each column represents an « value, ranging from a weak preference (left col-
umn) to strong (right column). For comparison, the w function is shown at the top of
each column.

The computational grid was moderately sized (N = 8, 591), the same spatial res-
olution as the underlying estimates of prey abundance was sampled. Once ¢ (p) had
been evaluated on the grid, solving for each steady-state pdf required only 0.009 s using
(13) with z computed from w by 2D FFT convolution.? This is 100—1,000 times faster
than an iterative solution for the dominant eigenvector of K if neither the factorization
nor analytic formula are used (a single dense matrix application of a general K takes
0.45 s and many such iterations are required for convergence, the number depending
on L and the particular w). Even if the factorization (split operator method) were used
to perform each iteration, our analytic formula (13) would still be 10-100 times faster.

How is steady-state space use controlled by « and L? Comparing the L = 6 row
(cases b, f, j) to the preference function itself (a, e, i), we see that with this large
length scale u™* is very close to proportional to w, as in 1D and as as explained in
Sect. 2.1. Proceeding down the figure, we see smaller L values result in a u™ with an
exaggerated tendency towards space use becoming increasingly concentrated in areas
of higher preference. This results in much more relative animal concentration in the
mesic grassland region than would be associated with traditional RSA treating all of
£2 as available habitat. This tendency has reached its limit by the bottom L = 0.1 row
(d, h, 1), where u™* is close to proportional to w2,

Consider the right-hand column (j, k, 1). Changing from L = 6 to L = 0.7 causes
a substantial increase in relative space use in the western part of the mesic grassland
(see the large bump to the left in k), but very little change in the eastern part of this
same habitat type. The explanation is simple: the grassland strip is generally wider
than L = 0.7 on the western side resulting in a local tendency towards u* o w?,
but narrower than L = 0.7 on the eastern side giving here u* oc w. Finally in case 1
L = 0.1 is narrower than all parts of the mesic grassland and the densities equalize on
west and east sides. This is analogous to the transition discussed in Sect. 4.1.1. This
interesting geometric effect is unaccounted for in traditional RSA.

4.2 Evolution in time

In Fig. 5 we show the time-dependent evolution of space use u(x, ¢) under the master
equation (2) in a single space dimension for simple piecewise linear model preference
function with a single discontinuity (see panel a), with exponential kernel with length
scale L = 0.01. Zero-flux boundary conditions were created by using the non-periodic

3 We have also tried other model preference functions on larger grids: a 200 x 200 grid (N = 40, 000)
requires 0.025 s to find u*. By contrast, note that solving for u™ without the factorization of K is impractical
(even representing K as a dense N-by-N matrix on this grid would require 12 GB of memory).
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Fig. 4 Steady-state 2D pdfs u™ for the exponential jump kernel (20), applied to preference functions w
derived from biomass data shown in Fig. 3. The three columns represent the choices « = 2, 15, 500 in the
preference model (22). At the top of each column is a surface plot of the preference function, followed
below by surface plots of u* for three decreasing values of L

jump kernel (19). Panels b-e show the resulting dynamics of space use, starting from
an initial condition ug(x) = §(x — xg) where x¢o = 0.82.

The computation with N = 400 grid points took 0.0005 s per time step; this was
done with iterated multiplication by the dense K matrix since the non-periodic choice
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Fig. 5 a Piecewise linear model preference function w(x), steady state pdf u*(x), and predicted limiting
case of steady-state pdf (11) (dashed). b—e Snapshots of time evolution of u(x, #) under master equation
(2) in 1D, at four times (indicated by 7/t the number of iterations). The exponential jump pdf of (19) is
used with L = 0.01. In e u is very close to steady-state; the prediction (11) is also shown (dashed)

of ¢ makes the & operator no longer a convolution. Notice the discontinuity feature
inu at x = 0.75 establishes itself rapidly and persists throughout the full time range.

Figure 6 shows the time-dependent evolution of space use for the 2D real-world
biomass preference model (22) with « = 500 and L = 0.7 (same parameters as
Fig. 4k), for a delta-function initial condition at xo = (9, 4). After a single iteration

@ Springer



154 A. H. Barnett, P. R. Moorcroft
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Fig. 6 Density plots snapshots of the time evolution of u(x, #) under master equation (2) in 2D, at four
times (indicated by /7 the number of iterations). The exponential jump pdf of (20) is used with L = 0.7,
and preference function derived from biomass data in Fig. 3 via Eq. (22) with « = 500. In d) u is very close
to steady-state, which is shown in Fig. 4k

(panel a), the local preference biases the individual’s movements towards the narrow
nearby eastern strip of mesic grassland. In panel (b) its space use is still split between
an expanding radial distribution about its initial position and the nearby grassland. In
panel (c), the compounded mechanistic movement steps have caused the individual’s
space use to become concentrated in the eastern strip of mesic grassland but the mesic
grasslands in the western portion of the landscape are, at this stage, mostly unoccu-
pied. Much later in the simulation however (panel d), the intensity of space use in the
western mesic grassland areas is higher than the eastern mesic grasslands, due to the
geometric effects on the steady-state u™ described in Sect. 4.1.2.

The simulation from which the snapshots in Fig. 6 were extracted is very rapid,
animating smoothly in real time at 30 frames/s even though N ~ 10*, allowing imme-
diate interactive model exploration. The raw calculation (no graphical animation) takes
0.008 s per time-step, benefitting greatly from the split operator method using FFT
convolution. Performing this without the aid of the factorization (15) is about 100
times slower. Furthermore, we find that the additional effort needed to extract the
mean-square displacement (xz)(t) = fg (x — xo)zu(x, t)dx, a useful measure of
spreading, is negligible. We remark that in order to model zero-flux boundary condi-
tions while still using FFT convolution, a periodized kernel was used but the w array
was zero-padded with a border of width O (L), at negligible extra cost.
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5 Local behavior near a sharp habitat transition

We now examine in more detail what takes place at the discontinuities in preference
function w(x) that arise at the boundaries between different habitat types. As noted
earlier, such discontinuities were not able to be treated in the derivation of the advec-
tion-diffusion limit in previous work [16].

For simplicity, we consider a single discontinuity on a 1D landscape, however we
expect, and observe, similar behavior in the more biologically relevant case of multiple
discontinuities arising at the edges of different habitat types on a 2D landscape. Con-
sider a landscape in which there exists a single boundary between two habitat types
located at x = 0, resulting in the following discontinues preference function:

1, x <0

wg, x>0 (23)

wx) = [

Given a jump kernel of width L it follows from (7) that z(x) is a smoothed (mollified)
step-function with transition region width L. The analytic formula (13) then tells us
that the steady-state pdf jumps by a ratio of wg precisely at the habitat transition;
however, when viewed on length scales larger than L, the pdf jumps by a ratio w(z). For
the 1D exponential kernel (19), the analytic expression for the steady-state follows
from that of z via (6), and is

L4 Wl p/L x <0
u*(x) = (24)
W[W—%e’xﬂ“], x>0

The spatial decay length is thus the same as that of the kernel ¢. This is shown in
Fig. 7a.

(@ (b)
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Fig. 7 a Detail of transition in steady-state space use occurring within distance L of a discontinuity in
preference function of the form (23) with wy = 2, for the 1D exponential jump kernel of (19). b Time-
evolution of u(x, t) in this same local region for 10 time-steps of the master equation (2), starting from an
initial pdf ug(x) = w(x)?
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How fast is this equilibrium reached? We demonstrate in Fig. 7b that the transition
region’s shape reaches its approximate equilibrium in only a single time-step (a slight
change also occurs over the next few time-steps). Here we chose initial conditions
which already matched the global pdf ratio of w%, in order to study the equilibration
in this local region alone.

5.1 Effective boundary condition for advection—diffusion equation

Armed with this understanding of the local behavior at a preference function discon-
tinuity, we can incorporate this into the Fokker—Planck PDE model for the evolution
of u(x, t) in the T — 0 limit (in which case kernel width L must also go to zero at an
appropriate rate). We remind the reader that the Fokker—Planck equation is

2

= el + 5 ldou] (5)

where c(x) and d(x), representing drift and diffusion rates, take on values given by
the t-scaling of the second moment of the jump kernel ¢ [7,16,17].

We combine two observations: (i) locally the steady-state in the vicinity of a dis-
continuity in w enforces a multiplicative jump (the square of the w ratio) in «, and (ii)
in the T — 0 limit the Fokker—Planck equation evolves on much slower time-scales
than the local equilibration in this vicinity (which happens in O(t)). Thus we expect
that, for evolution on time-scales long relative to 7 the transition region is in local
equilibrium, with the effective boundary condition

u(x_,t) _ U(xy,t)

— , 1 11t >0, 26
W2~ (wy)? orait= (20)

where the subscripts — and + indicate limiting values on the left and right side of the
discontinuity respectively. Similarly, by conservation of the flux J (x) = % [d(x)u] —
c(x)u across the discontinuity, we must have that if d(x) is continuous and c(x) = 0
then

0 0
—u(x_,t) = —u(x4, 1), forall t > 0, 27
ax ox

at a step discontinuity in w. We may now interpret (26) and (27) as matching condi-
tions for coupled advection—diffusion equations on either side of the discontinuity. In
this way we have a recipe to understand the diffusion limit even in the presence of dis-
continuous preference functions. We remark that our assumption of locally vanishing
¢ corresponds to no gradient in w locally on either side (the case with general values
of w’ either side we postpone for future work). The above argument is non-rigorous,
relying on reasoning based on separation of length- and time-scales. However it seems
to be supported qualitatively by the evidence in Fig. Sb—e (although at early times (26)
does not appear to hold accurately). We suggest that a more detailed analysis via
matched asymptotic expansions should be carried out.
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6 Conclusions

We have analyzed the mathematical properties of a mechanistic resource selection
(MERSA) model that captures the influence of spatially localized habitat preference
on the movement behavior of individuals and predicts their resulting patterns of space
use. The model combines random foraging motion with a local sensitivity to habitat
preference over a “perceptual radius” L. Directed movement bias is generated in a
similar manner to the angle-biased (von Mises) jump kernels used in [17], and also
becomes equivalent in the small-L limit to continuous-time advection—diffusion in
a “confining potential” as in [8]. Our analysis shows that the model has a desirable
factorization (15) which yields an unusually simple closed-form formula (13) for the
steady state pdf u*.

In this model, the effect of the compounded uncorrelated random movement deci-
sions is to produce a space use whose scaling with the preference function w is geom-
etry dependent: u* is linear in w if L is large compared to local habitat features, but
quadratic if L is small. This novel spatial effect has been analyzed previously only
in the case of one-dimensional movement, in the context of the advection—diffusion
limit in which the perceptual radius of individuals is small (L — 0) [16]. The analytic
results developed here extend this to any L, to the case of discontinuous preference
functions (both in the steady-state and time-dependent cases), and to the more biolog-
ically relevent case of two dimensions.

This is expected to have important consequences for understanding resource selec-
tion behavior, one of which we now outline. By comparing observed animal habitat
choices to those available in a buffer region, the RSA variants [1,4,6,9] discussed in
the introduction implicitly assume a model for movement, similar to our proposed
MERSA type. The RSA regression fits the preference function w within the buffer
scale so that u* o< w. Then from our mathematical analysis we know that on larger
spatial scales u™ oc w?, that is, the effects of preference are exaggerated. This indicates
that it is crucial that RSA techniques take into account the correct spatial scale and
distribution of animal movements if the preference function is to be meaningful: too
large a buffer choice results in overestimation of strength of habitat preferences, as has
been mentioned by other authors (e.g., see Step Selection Functions in [6]). We suggest
that such interpretion problems could be bypassed by fitting the data with a unified
model such as we propose, which includes both fine-scale movement decisions and
preference bias. An example of this style of model-fitting and evidence comparison
is Forester et al. [5]; it would be very interesting to combine the mechanistic aspects
of our MERSA model with their state-space inference approach. We expect that by
such model comparison, existing empirical movement models such as the multiscaled
kernel function of [9] could be placed on a more solid foundation.

We have shown that the formula (13) and factorization property (15) of our model
allows large gains in computational efficiency (when compared to a general redis-
tribution operator). This includes the case of discontinuous 2D preference functions
motivated by observations of spatially varying prey availability across discrete habitat
types. We believe such efficient forward models will be important tools, as inverse
modeling and fitting of multiple model parameters to data (discussed above) become
more popular and numerically intensive.
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Finally, although we did not construct or study them numerically in this work, we
expect that the benefits demonstrated here for a model that is linear in u# (with prey-
or spatially dependent movement rates) will also carry over to the analysis of non-lin-
ear models such as those with density-dependent diffusion (e.g., Sect. 3 of [24]), and
scent-mediated interactions between multiple animal packs [12,17,24]. For example,
chemotaxis could be included in the preference function w, in which case our ana-
lytic formula (13) could be used to turn a coupled PDE system into coupled algebraic
systems, a huge simplification. We also expect that by extending our preliminary anal-
ysis (Proposition 2), the operator spectral properties, and hence equilibration rates of
animal home range space use, may be deduced.

Concise Matlab codes for computation of all figures in this work are freely available
at http://math.dartmouth.edu/~ahb/moorcroft/
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