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Abstract

Numerous current efforts seek to improve the representation of ecosystem ecology

and vegetation demographic processes within Earth System Models (ESMs). These

developments are widely viewed as an important step in developing greater realism

in predictions of future ecosystem states and fluxes. Increased realism, however,

leads to increased model complexity, with new features raising a suite of ecological

questions that require empirical constraints. Here, we review the developments that
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permit the representation of plant demographics in ESMs, and identify issues raised

by these developments that highlight important gaps in ecological understanding.

These issues inevitably translate into uncertainty in model projections but also allow

models to be applied to new processes and questions concerning the dynamics of

real-world ecosystems. We argue that stronger and more innovative connections to

data, across the range of scales considered, are required to address these gaps in

understanding. The development of first-generation land surface models as a

unifying framework for ecophysiological understanding stimulated much research

into plant physiological traits and gas exchange. Constraining predictions at ecologi-

cally relevant spatial and temporal scales will require a similar investment of effort

and intensified inter-disciplinary communication.

K E YWORD S

carbon cycle, demographics, dynamic global vegetation models, Earth System Model,

ecosystem, vegetation

1 | INTRODUCTION

Ecological demographic processes govern terrestrial vegetation struc-

ture, and vegetation structure influences climatically important fluxes

of carbon, energy, and water (Bonan, 2008). Better representation of

vegetation demography in Earth System Models (ESMs) has repeatedly

been identified as a critical step toward a more realistic representation

of biologically mediated feedbacks in modeling future climates (Evans,

2012; Moorcroft, 2006; Moorcroft, Hurtt, & Pacala, 2001; Purves &

Pacala, 2008; Thomas, Brookshire, & Gerber, 2015). Model-data com-

parison is greatly assisted by increasingly realistic model abstraction

methods. Similarly, a greater range of data can be used for parameteri-

zation and initialization, and in some cases, models improvements can

be directly linked to better simulation of biodiversity (Levine et al.,

2016). These improvements are traded off against increasing complex-

ity and computation expense.

Dynamic global vegetation models (DGVMs) are the components

of land surface models (LSMs) that try to predict the global distribu-

tion of vegetation types from physiological principles (Cao & Wood-

ward, 1998; Foley et al., 1996; Sitch et al., 2003; Woodward &

Lomas, 2004). Traditionally, DGVMs represent plant communities

using a single area-averaged representation of each plant functional

type (PFT) for each climatic grid cell. This simplification and the

resulting computational efficiency has allowed first generation

DGVMs (hereafter g1DVMs) to be broadly adopted within ESMs

(Arora & Boer, 2010; Bonan, Levis, Sitch, Vertenstein, & Oleson,

2003; Cox, 2001; Krinner et al., 2005).

This level of abstraction means, however, that g1DVMs do not

capture many demographic processes considered important for the

accurate prediction of ecosystem composition and function, including

canopy gap formation, vertical light competition, competitive exclu-

sion, and successional recovery from disturbance (Feeley et al.,

2007; Hurtt, Moorcroft, Pacala, & Levin, 1998; Moorcroft et al.,

2001; Smith, Prentice, & Sykes, 2001; Stark et al., 2012).

In contrast, forest gap (Bugmann, 2001; Dietze & Latimer, 2011)

and “individual-based” models (IBMs) (Christoffersen et al., 2016;

Fischer et al., 2016; Fyllas et al., 2014; Sato, Ito, & Kohyama, 2007;

Shuman, Shugart, & Krankina, 2014; Smith et al., 2001) represent

vegetation at the level of individual plants. IBMs represent spatial

variability in the light environment and thereby simulate competitive

exclusion, succession, and coexistence of tree species (Pacala et al.,

1996; Smith et al., 2001). Simulation of individual trees in a spatially

explicit, stochastic framework incurs a notable computational pen-

alty, however. These challenges are typically addressed by limiting

the spatial scope (Sakschewski et al., 2015), temporal frequency,

and/or reduced sampling of the potential ensemble of model out-

comes (Sato et al., 2007; Smith et al., 2014).

As a compromise between the abstraction of g1DVMs and the

computational expense of IBMs, many groups have developed “co-

hort-based” models, whereby individual plants with similar properties

(size, age, functional type) are grouped together (Haverd et al., 2013;

Hurtt et al., 1998; Lischke, Zimmermann, Bolliger, Rickebusch, &

L€offler, 2006; Medvigy, Wofsy, Munger, Hollinger, & Moorcroft,

2009; Moorcroft et al., 2001; Scherstjanoi, Kaplan, & Lischke, 2014;

Smith et al., 2014; Weng et al., 2015). The cohort approach retains

the dynamics of IBMs, with reduced computational cost, but

removes stochastic processes that can enhance the representation

of functional diversity (Fisher et al., 2010).

Herein we refer to both individual and cohort-based models as

“vegetation demographic models” (VDMs). We define VDMs as a

special class of DGVM, which include representation/tracking of

multiple size-classes or individuals of the same PFT, which can

encounter multiple light environments within a single climatic grid

cell. We adopt this terminology since both individual and cohort

models present similar opportunities and challenges as they are

implemented within ESMs.

As in first-generation models the distributions of PFTs, and their

associated traits, can be geographically and temporally “filtered” in
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VDMs via the mechanisms of competition, differential recruitment and

mortality. In VDMs, however, disturbance history and vertical light

competition modulate interactions between plant traits and resource

acquisition. Furthermore, it is typical (but not universally the case) that

a priori constraints on distribution (climate envelopes) are removed

(Fisher et al., 2015). Vegetation structure and distribution thus

become entirely emergent model properties of ascribed plant func-

tional traits and their interactions with abiotic environmental condi-

tions. In addition, VDMs provide critical new opportunities for data-

model integration owing to their higher fidelity representation of the

structure of vegetation stands, as we will discuss in this review.

Several efforts to embed VDMs within ESMs are now coming to

fruition, but understanding of their provenance, function and uncer-

tainties remains specialized knowledge even within the land surface

modeling community. In this review, we focus on those models cur-

rently resident in ESMs or regional atmospheric models. Many “of-

fline” VDMs exist, with novel and beneficial approaches (e.g., Fyllas

et al., 2014; Haverd et al., 2013; Pavlick, Drewry, Bohn, Reu, & Klei-

don, 2013; Sakschewski et al., 2015; Scheiter, Langan, & Higgins,

2012; Scherstjanoi, Kaplan, Thürig, & Lischke, 2014). We focus on

the particular challenges of large-scale implementations, coupled to

atmospheric models, since this process imposes important boundary

conditions on VDM functionality. For example, ESMs typically

require land-atmosphere fluxes of carbon, water, and energy at

hourly or sub-hourly timescales, and these must be in exact balance

to prevent erroneous model drift. Implementation must be global in

principle, imposing computational restrictions, and many other pro-

cesses (hydrology, snow, lakes, urban areas, biogeochemical cycles,

land-use change) must be simulated consistently.

Underpinning the implementation of VDMs in LSMs are a set of

processes whose representations require significant modification

(compared to first-generation DGVMs) to provide the appropriate

function in the context of multi-layer, multi-PFT ecosystems. These

include the partitioning of light and other resources between individ-

uals or cohorts, the representation of ecophysiological processes

involved in carbon and nutrient uptake, allocation, mortality, and

recruitment within the newly resolved model dimensions, and the

interpretations of land use, fire, and other disturbances. These new

model structures pose several research challenges and opportunities.

In this review, which is the first to bring together expertise from

such a diverse range of VDM groups, we:

1. summarize the state-of-the-art of VDM development,

2. discuss model features specific to VDMs and alternative assump-

tions currently used,

3. detail datasets available for validation and benchmarking, and

4. outline future code development and data collection strategies

needed to better constrain these new model elements.

We hope to both motivate research aimed at informing the rep-

resentation of plant ecology in ESMs and highlight gaps in basic eco-

logical theory that are now at the front line of simulating the

biosphere’s role in the climate system. We argue that it is too early

to assert that any one methodology is the ideal representation of

plant demographics to use within ESMs. Rather, until relevant data

and knowledge gaps are filled through concerted empirical and

model-based research, we expect that an ensemble of techniques

will allow for more robust predictions of likely trajectories of vegeta-

tion structural changes, their impacts on biogeochemistry and cli-

mate feedbacks (Koven et al., 2015; Sanderson, Knutti, & Caldwell,

2015).

2 | PROGRESS TO DATE

In this section we detail the ongoing progress of implementing vege-

tation demographic models (VDMs) inside ESMs on a loose contin-

uum from individual- to cohort-based approaches (Table 1).

2.1 | SEIB-DGVM

The SEIB-DGVM (Spatially-Explicit Individual-Based Dynamic Global

Vegetation Model, http://seib-dgvm.com) is an IBM, representing

variability in light in both the vertical and horizontal dimensions. Fol-

lowing initial implementation at a global scale (Sato et al., 2007),

SEIB-DGVM has been modified to represent plant population

dynamics and biogeochemistry in south-east Asia (Sato, 2009), Africa

(Sato & Ise, 2012), and Siberia (Sato, Kobayahi, & Delbart, 2010).

TABLE 1 Table of attributes of vegetation demographics models discussed in this paper

Model acronym Name
Vegetation
representation Coupled to ESM? Stochastic?

Canopy
structure

Disturbance
history patches?

SEIB Spatially Explicit Individual-Based

model

Individual MIROC-ESM Yes Individuals No

LPJ-GUESS Lund-Potsdam-Jena General

Ecosystem Simulator

Individual

or Cohort

EC-Earth, RCA-GUESS Yes (optional for

some processes)

Flat-top Yes

LM3-PPA Perfect Plasticity Approximation Cohort GFDL-ESM No PPA No

ED Ecosystem Demography model Cohort RAMS No Flat-top Yes

ED2 Ecosystem Demography model v2 Cohort RAMS No Flat-top Yes

CLM(ED) Community Land Model with

Ecosystem Demography

Cohort CESM No PPA Yes

FISHER ET AL. | 37

http://seib-dgvm.com


SEIB simulates a 30 m 9 30 m patch of forest, where individual

trees establish, compete, and die. Each tree is composed of a cylin-

drical crown and trunk, plus fine roots. Tree crowns are horizontally

sliced into 10 cm deep “disks,” for which photosynthesis is calcu-

lated separately with a daily physiological timestep. Leaf area is

updated daily by turnover and growth. Crowns of different trees do

not occupy the same physical space. To represent spatial plasticity,

crowns are able to grow a given distance horizontally in response to

light availability each year.

SEIB-DGVM is implemented within the MIROC-ESM (Watanabe

et al., 2011). In the ESM context, SEIB-DGVM is run once for each

grid cell, representing one particular integration of the stochastic for-

est, to allow global applications.

2.2 | LPJ-GUESS

The Lund-Potsdam-Jena General Ecosystem Simulator (Smith et al.,

2001, 2014) is also an IBM, but with multiple patches accounting for

stochastic heterogeneity in composition and structure arising from suc-

cession following stand-destroying disturbance. Both “individual” and

more commonly used “cohort” modes are implemented. In the cohort

mode, tree or shrub individuals of the same age and PFT within patch

are grouped together and simulated as an average individual, scaled to

patch level via cohort density. Multiple PFTs may occur within a single

patch, and compete for light, water, and nitrogen. Photosynthesis,

stomatal conductance, phenology, turnover, and allocation follow LPJ-

DGVM (Sitch et al., 2003), with the addition (LPJ-GUESSv3.0 onward)

of nitrogen cycling (Smith et al., 2014). The model includes the wildfire

scheme of Thonicke, Venevsky, Sitch, and Cramer (2001), and a new

representation of fire dynamics is in development.

LPJ-GUESS is coupled to the RCA4 regional climate model (Smith,

Samuelsson, Wramneby, & Rummukainen, 2011; Wramneby, Smith, &

Samuelsson, 2010). It also accounts for land cover dynamics and carbon

cycling within the EC-EARTH ESM (Hazeleger et al., 2010;Weiss et al.,

2014). Daily meteorological fields are input to LPJ-GUESS and adjust-

ments in leaf area index for separate “high” and “low” vegetation tiles,

averaged across patches, are returned to the land surface physics

scheme. Impacts on energy and water exchange with the atmosphere

are manifested via albedo, evapotranspiration, and surface roughness

length. CO2 is exchanged daily with the atmospheric transport model.

2.3 | LM3-PPA

The Geophysical Fluid Dynamics Laboratory (GFDL) Land Model 3

with the Perfect Plasticity Approximation (LM3-PPA) is a cohort-

based VDM (Weng et al., 2015). The PPA assumes that tree crowns

“perfectly” fill canopy gaps through phototropism (plasticity) (Strigul,

Pristinski, Purves, Dushoff, & Pacala, 2008). Crowns thus self-orga-

nize into discrete canopy layers, within which all plants receive the

same incoming radiation The LM3-PPA model extends earlier work

on simpler tractable PPA models (Farrior, Bohlman, Hubbell, &

Pacala, 2016; Farrior, Dybzinski, Levin, & Pacala, 2013) to include

prognostic energy, water, and carbon cycling. The simpler PPA

models allows ecosystem scale consequences of plant strategies to

be rapidly predicted, allowing the properties of the complex model

to be investigated in greater depth (Weng et al., 2015).

LM3-PPA successfully captured observed successional dynamics

of one site in Eastern US temperate forest (Weng et al., 2015), and

the changing relative abundances of deciduous and evergreen strate-

gies over succession in three sites spanning temperate to boreal

zones in North America (Weng, Farrior, Dybzinski, & Pacala, 2016).

Coupling to the GFDL ESM for site-level simulations has been com-

pleted, and global implementation is currently in progress.

2.4 | Ecosystem Demography models

The Ecosystem Demography (ED) concept is also a cohort-based

representation of vegetation dynamics (Hurtt et al., 1998; Moorcroft

et al., 2001). In contrast to the LM3-PPA, ED discretizes the simu-

lated landscape into spatially implicit “patches” according to “age

since last disturbance,” capturing the dynamic matrix of disturbance-

recovery processes within a typical forest ecosystem in a determinis-

tic manner (in contrast to LPJ-GUESS and SEIB). Within patches,

individuals are grouped into cohorts by PFT and height class, and

height-structured competition for light between cohorts drives suc-

cessional dynamics. ED uses a patch fusion/fission scheme to track

the landscape-scale age distribution resulting from disturbance. Dur-

ing fission, disturbance splits patch areas into undisturbed and dis-

turbed fractions. During fusion, (to keep the number of patches from

growing exponentially), patches that are similar in structure are

merged. No subgrid geographic information is retained. Similar

fusion/fission routines exist for cohorts. At least three derivatives of

the original ED concept have emerged since its inception, including:

2.5 | ED

One implementation of the Ecosystem Demography concept (cur-

rently known solely as “ED”), was developed from (Moorcroft et al.,

2001) applied to the U.S by Hurtt et al. (2004) and Albani, Medvigy,

Hurtt, and Moorcroft (2006), and is now a global model (Fisk, 2015).

Advances in this version have focused on the inclusion of land-use as

driver of demography (Hurtt et al., 2006), transient effects of tropical

cyclones (Fisk et al., 2013), plant migration in response to climate

change (Flanagan et al., 2016), and detailed use of vegetation struc-

ture to initialize and test ecosystem dynamics (Fisk, 2015; Hurtt, Tho-

mas, Fisk, Dubayah, & Sheldon, 2016; Hurtt et al., 2004, 2010;

Thomas, Hurtt, Dubayah, & Schilz, 2008). This branch of ED has also

been coupled to the RAMS mesoscale atmospheric model (Roy, Hurtt,

Weaver, & Pacala, 2003) and the GCAM integrated Assessment Model

(Fisk, 2015) and also serves as base model of the NASA Carbon Moni-

toring System, and the NASA-GEDI mission (Dubayah et al., 2014).

2.6 | ED2

The Ecosystem Demography Model v2 (ED2) (Medvigy et al.,

2009, https://github.com/EDmodel/ED2) also uses the scaling
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concepts of Moorcroft et al. (2001), with numerous subsequent

developments. In ED2, grid cells are further disaggregated by simi-

lar edaphic conditions. Heterogeneity in light environment and

canopy structure is integrated into the biophysical scheme, giving

rise to differentiated horizontal and vertical micro-environments

within grid-cells that vary in temperature, humidity, soil moisture,

and soil nutrient conditions. Recent developments include a plant

hydrodynamic scheme, drought-deciduous phenology (Xu, Medvigy,

Powers, Becknell, & Guan, 2016), nitrogen fixers, boreal-specific

PFTs, dynamic soil organic layers, and trait-based recruitment

(Trugman et al., 2016).

ED2 has been tested in boreal (Trugman et al., 2016), temperate

(Antonarakis, Munger, & Moorcroft, 2014; Medvigy, Jeong, Clark,

Skowronski, & Sch€afer, 2013; Medvigy & Moorcroft, 2012; Medvigy

et al., 2009), tropical (Kim et al., 2012; Levine et al., 2016; Xu et al.,

2016; Zhang et al., 2015), tundra (Davidson et al., 2009), agricultural

(Lokupitiya et al., 2016), and biofuel systems (LeBauer, Wang, Rich-

ter, Davidson, & Dietze, 2013). It has also been applied to ecosys-

tems undergoing disturbance events such as fire, drought, elevated

CO2, land-use change, and insect defoliation (Medvigy, Clark,

Skowronski, & Sch€afer, 2012; Miller, Dietze, DeLucia, & Anderson-

Teixeira, 2016; Trugman et al., 2016; Zhang et al., 2015). ED2 is

coupled to the Regional Atmospheric Modeling System (RAMS)

(Knox et al., 2015; Swann, Longo, Knox, Lee, & Moorcroft, 2015).

2.7 | CLM(ED)

CLM(ED) (Fisher et al., 2015) is a variant of the Community Land

Model (CLM) (Lawrence et al., 2011; Oleson et al., 2013), integrating

the ED concept within the architecture of the Community Earth Sys-

tem Model (Hurrell et al., 2013). CLM(ED) includes a merging of the

ED and PPA concepts, allocating cohorts to canopy and understorey

layers. It deviates from the standard PPA as it does not allocate canopy

levels according to a definitive height threshold (z*, Purves, Lichstein,

Strigul, & Pacala, 2008; Strigul et al., 2008) and instead splits growing

cohorts between canopy layers—the fraction of each cohort remaining

in the canopy a continuous function of height (in principle increasing

the probability of coexistence, Fisher et al., 2010). Canopy biophysics,

hydrology, photosynthesis, and respiration all follow CLM4.5 (Oleson

et al., 2013) subject to disaggregation into cohort-level fluxes. CLM

(ED) includes new representations of phenology and carbon storage

and a modified SPITFIRE fire model (Thonicke et al., 2010). CLM(ED)

was applied regionally, focusing on the sensitivity of biome boundaries

to plant trait representation (Fisher et al., 2015) and will be re-named

FATES (Functionally Assembled Terrestrial Ecosystem Simulated) in

future references.

3 | APPROACHES TO MODEL STRUCTURE
AND PROCESS REPRESENTATION

Historically, demographic models (typically IBMs) have been distinct

from models with detailed plant physiological representation. In the

VDMs discussed here, however, demographics (recruitment, growth,

mortality) arise primarily as functions of physiological functions and

so the two are intimately linked. Thus, design decisions in physiologi-

cal algorithms have potentially critical impacts on the emergent pop-

ulation dynamics. In this section, we discuss the process

modifications that are required when moving from a g1DVM model

to a size-structured VDM. These include higher-order representation

of competition for light, water and nutrients, demographic processes

(recruitment, mortality) and disturbance (fire, land use). Our intention

is to (i) illustrate the logic behind the inclusion of new model fea-

tures, (ii) highlight process uncertainties that remain or emerge (by

way of motivating new research themes), and (iii) provide context

for the following discussion of model evaluation data.

3.1 | Competition for light

Land surface models calculate radiation partitioning and the within-

canopy radiation regime using radiative transfer models (RTM). RTMs

simulate the reflectance, interception, absorption, and transmission

(into the ground) of shortwave radiation (0.3–2.5 microns) through a

canopy comprised of scattering elements (leaves, wood, soil, and

snow). Incoming radiation is typically partitioned into direct and dif-

fuse streams. Interception of direct radiation by scattering elements

results in reflected and transmitted fluxes of diffuse radiation.

Upwards-reflected diffuse radiation affects leaves higher in the

canopy, preventing a simple solution to the partitioning of energy.

To resolve this, iterative methods calculate upwards and downwards

diffuse fluxes until a solution is reached (Goudriaan, 1977; Norman,

1979). Other approaches use the “two-stream approximation” (Dick-

inson, 1983; Sellers, 1985), a system of two coupled ordinary differ-

ential equations which can be analytically solved (Liou, 2002)

assuming a continuum with homogenous reflectance and transmis-

sion characteristics. The two-stream approximation is used for a sin-

gle canopy divided into sun/shade fractions in CLM4.5 (Bonan et al.,

2011) and as a set of canopy layers each with its own 2-stream solu-

tion for JULES (Mercado, Huntingford, Gash, Cox, & Jogireddy,

2007), ORCHIDEE-CAN (Naudts et al., 2015), ED2 (Medvigy et al.,

2009) and CLM(SPA) (Bonan, Williams, Fisher, & Oleson, 2014).

In VDMs, the RTM is necessarily more complex than standard

LSMs because of the need to have more than one PFT within a

given vertical structure canopy, invalidating the homogeneity

assumptions of the two-stream model. VDMs must further deter-

mine (i) how to partition leaves and stems of cohorts/individuals

into discrete scattering elements within which there can be an

assumption of homogeneity and (ii) how to arrange these scatter-

ing elements relative to each other, to discern the influence of

plant height on radiation interception. The details of how these

issues are resolved control the nature of the feedback between

plant size and light acquisition, and thus are a pivotal component

of any trait-filtering architecture (Fisher et al., 2010; Scheiter et al.,

2012).

Solving these problems efficiently is a significant component of

the implementation of VDMs in ESMs. Here, we summarize the
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status of the existing schemes, their advantage and disadvantages,

and suggest ways in which these might be developed further. Alter-

native schemes are represented in Figure 1.

3.2 | Individual-based approach: SEIB

In SEIB-DGVM, each individual crown has an x-y location in space,

and shading of trees by their neighbors is explicitly simulated. Direct

and diffuse photosynthetically active radiation (PAR) are estimated

for each crown disk. For diffuse PAR, all disks at the same height

receive the same radiation, attenuated by the leaf area index (LAI)

above each disk using Beer’s law (Goudriaan, 1977). For direct light,

a “virtual cylinder” is calculated for each canopy disc. The cylinder

extends South, at 0.869 the midday solar angle (Sato et al., 2007),

and available PAR is attenuated (also using Beer’s law) by the leaves

located within the cylinder. The grass layer is horizontally divided

into 1 9 1 m cells, each of which receives PAR attenuated by the

LAI above. Some simplifications are employed to efficiently simulate

individual trees (daily timestep, static solar angle, few or no repli-

cates). In contrast, cohort models (below) have a lower computa-

tional footprint, but must designate rules by which light is

distributed to cohorts of differing height in the absence of direct

spatial competition.

3.3 | Infinitely thin flat crowns: ED, ED2

Perhaps the most straightforward method for representing how

cohort leaves are aligned with respect to incoming light is the “flat-

top crown” idea; wherein the total leaf area of each cohort is con-

ceptually distributed evenly across the entire canopy area of a patch

(one infinitely thin layer). The cohort-layers are stacked vertically

and the two-stream model is used to determine radiation absorbed

by each layer at its midpoint. Each cohort thus is shaded by all taller

cohorts.

The flat-top method is relatively straightforward to implement,

but suffers from the biologically unrealistic outcome that marginally

taller cohorts outcompete their neighbors in terms of light availabil-

ity. This can lead to systematic growth biases (compared to observa-

tions) where the tallest trees grow too fast and next-tallest trees

more slowly, making coexistence of multiple PFTs more difficult to

achieve (Fisher et al., 2010). Furthermore, there is no representation

of the effects of space on canopy structure (Farrior et al., 2016). In

ED2, these negative effects have been partially mitigated by (i) the

consideration of cohort crown area, which allows partial, rather than

complete, shading among cohorts and, (ii) a cohort splitting algorithm

that prevents a single cohort from accumulating a leaf area index

above a predetermined maximum LAI threshold.

(a) (b)

(c) (d)

F IGURE 1 Organization of canopy schemes in four vegetation demographic models. Shades of yellow represent incident light levels,
whereas shades of gray indicate alternative plant functional types (PFTs). Boxes represent cohorts as represented by ED & ED2, LM3-PPA, and
CLM(ED). Dotted cohort boundaries denote cohorts that belong to the understory, all of which receive identical light levels, in the PPA
schemes of the LM3-PPA and CLM(ED) models. Note that in the LM3-PPA there can be more than one understory layer, but in CLM(ED)
there cannot. In the cohort-based schemes, horizontal positioning is for illustrative purposes only and not represented by the model, which is
one-dimensional. Dotted lines in the CLM(ED) figure illustrate within-canopy leaf levels resolved by the radiation transfer scheme. In the LM3-
PPA, “z*” indicates the cohort height above which canopy/understory status is defined. In the CLM(ED), there is no “z*” threshold, and larger
cohorts in the understory may in principle be taller than the shorter cohorts in the canopy layer (reflecting imperfect competition processes,
per Fisher et al., 2010). Note that for ED-derived models (ED, ED2, CLM(ED)), cohort organization is illustrated only for a single patch, though
each model represents a multitude of patches having different ages since disturbance within a single site
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3.4 | Vertically overlapping crowns: LPJ-GUESS

LPJ-GUESS adopts an approach similar to ED2 but with three-

dimensional crowns evenly distributed across the area (ca. 0.1 ha) of

each stochastic patch, and uniformly distributed in the vertical

dimension from ground level up to the current maximum height of

each individual or cohort. A multilayer Beer’s law integration parti-

tions incoming PAR among cohorts by relating light absorptance of

each layer to that layer’s leaf area using a single fixed extinction

coefficient (Smith et al., 2001). A herbaceous layer captures PAR not

absorbed by the canopy.

3.5 | Perfect plasticity approximation: LM3-PPA

The PPA assumes that trees can forage for light in a “perfectly

plastic” manner horizontally within a patch. Starting with the tallest

tree, the crown area of each successively shorter tree is assigned

to the canopy layer until the cumulative canopy crown area equals

or exceeds the patch ground area. Once the “canopy” is filled with

tree crowns, the next shorter trees inhabit the first understory

layer and are shaded by the trees in the canopy. If the first under-

story layer is also full, then a additional understory layers are cre-

ated. All crowns in the same layer receive the same incoming

radiation streams, and penetration of light through each crown is

determined using Beer’s law (Weng et al., 2015). The radiation

streams penetrating the crowns of a layer are averaged before

passing to the next lower layer. Light reflected by the soil can be

absorbed by the leaves above. Physiologically-based PPA models

(Farrior, et al., 2013; Farrior, Rodriguez-Iturbe, Dybzinski, Levin, &

Pacala, 2015; Dybzinski, Farrior, Wolf, Reich, & Pacala, 2011;

Weng et al., 2015) include a gap fraction parameter (g), whereby

only 1�g of each layer can be filled. This allows more light to

reach the understory, and thus more realistic understory behavior,

but does not fundamentally change the PPA algorithm.

3.6 | Discretized PPA: CLM(ED)

The CLM(ED) follows a similar logic to the PPA, and resolves radia-

tion streams between canopy layers, and also discretizes direct and

diffuse fluxes into “leaf layers” within cohorts. To reduce computa-

tional intensity, cohorts are merged together for flux calculations,

such that all leaves of each PFT are represented by a three-dimen-

sional matrix of PFT, canopy layer, and leaf layer. An iterative, lay-

ered solution, following Norman, Perry, Fraser, and Mach, (1979),

calculates equilibrium upwards and downwards radiation fluxes.

3.7 | Modifying extreme assumptions

The existing methodologies for the division of solar radiation in

cohort models represent two extreme assumptions at either end

of a continuum. The flat-top assumption implies that small differ-

ences in relative height lead to large changes in light availability

(within a patch), whereas the PPA assumption means that

differences in height, however extreme, only affect light availability

at the boundaries between canopy layers (canopy vs. understory).

In reality, canopy trees all receive equivalent light from above, but

the amount of lateral light they receive depends on their height

relative to their neighbors. An ideal framework might include the

capacity of the PPA to represent the impact of space on competi-

tion for overhead light, while adding change in lateral light

availability with height among canopy trees. A spatially-implicit

scheme that could capture both of these features would enhance

the ability of VDMs to capture size-related variation in light avail-

ability, and thus presumably size-related variation in growth and

survival.

3.8 | Water acquisition and its influence on plant
physiology

In comparison with competition for light, competition for water is

less well-understood, and model representations remain poorly

developed, especially in terms of how water is distributed among

competing plants, as well as in how water acquisition affects plant

processes.

3.9 | Representing competition for water

3.9.1 | Shared vs. partitioned water resources

Models use contrasting assumptions of how water resources are

divided horizontally within a grid-cell. Some VDMs represent a single

“pool” of water from which all plants draw equally (CLM(ED), LM3-

PPA, SEIB-DGVM, Figure 2b). Other models (ED2, LPJ-GUESS)

divide water resources by patch (Figure 2a). Real ecosystems are

unlikely to conform to either of these simplifications. In reality,

whether water resources are shared across patches depends on the

relative characteristic length scales of disturbance and of horizontal

water redistribution (Jupp & Twiss, 2006). Where canopy gaps and

thus patches are small, we might expect that water would be effec-

tively shared between patches of different ages; in contrast, where

disturbance events are larger-scale (blow-downs, fires) and patches

accordingly larger, we might expect little or no such water sharing.

No VDMs track length scales or arrangement of disturbance events

by default, nor do they represent inter-patch water fluxes The

impact of this type of effect can be important for the surface energy

balance (Shrestha, Arora, & Melton, 2016).

3.9.2 | Spatial aggregation of water resources

A rich literature exists on the spatial partitioning of water resources

in semi-arid regions (Borgogno, D’Odorico, Laio, & Ridolfi, 2009;

D’Odorico, Caylor, Okin, & Scanlon, 2007; Gilad, Shachak, & Meron,

2007; Meron, 2011; Meron, Gilad, von Hardenberg, Shachak, &

Zarmi, 2004; Rodriguez-Iturbe, D’Odorico, Porporato, & Ridolfi,

1999; Scanlon, Caylor, Levin, & Rodriguez-Iturbe, 2007; van Wijk &

Rodriguez-Iturbe, 2002), the focus of which is the tendency for soil
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(a)

(b)

(c)

(d) (e)

F IGURE 2 Illustration of unresolved belowground resource partitioning issues in vegetation demographic models. (a, b) show two
alternative depictions of resource partitioning in an age-since-disturbance resolving (ED-type) model. In (a) resources (water/nutrients) are
resolved for each age-since-disturbance patch, meaning that different extraction levels can affect resource availability over the successional
gradient, a situation made more likely by large spatial-scale disturbances. In (b) all patches share a common pool, a situation more relevant to
smaller (individual) scale disturbances. (c) Illustrates two mechanisms of water resource concentration in a semi-arid system, including greater
infiltration rates near vegetation (differentially sized vertical arrows) and spatially extensive root systems that move water to the site of
individual plants. Both allow greater local water availability than is possible using the grid cell mean soil moisture value. (d, e) illustrate a
mechanism for size asymmetric in resource competition. In (d) two similar-sized root zones intersect, depleting the resource where they
overlap. Since they are the same size, neither has an advantage. In (e) the smaller root system has most of its resource uptake soil volume
depleted, whereas the larger root system is only mildly affected by the overlap, thus the larger root system gains an asymmetric advantage
analogous to that of large trees in the forest canopy competing for light
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moisture states to shift away from the mean due to vegetation-

mediated positive feedback mechanisms (Figure 2c), including root

foraging for water, and impacts of vegetation on infiltration and

recruitment (Ivanov et al., 2010; Shachak et al., 2008). These mecha-

nisms allow patchy vegetation to persist where the spatial mean

moisture state might prevent viable vegetation growth. LSMs typi-

cally assume spatial homogeneity of moisture, leading in principle to

underestimations of vegetation survival.

3.9.3 | Size symmetry of water competition

The degree to which competition for belowground resources is asym-

metric with regard to plant size is unclear. VDMs typically allow parti-

tioning of water between plants of differing root depth (Ivanov et al.,

2012) but within a given soil volume assume perfectly symmetric com-

petition. Schwinning and Weiner (1998) argued that, where a large

plant is in competition with a small plant, the fraction of the small

plant’s root zone affected by the resulting resource depletion is larger

than the affected fraction of the root system of the large plant,

(Figure 2d,e) suggesting the likelihood of size asymmetry, but the

degree to which this is a dominant phenomenon remains unclear

(DeMalach, Zaady, Weiner, & Kadmon, 2016; Schenk, 2006).

3.10 | Impacts of water on plant physiology

LSMs have used simplistic representations of the responses of plants

to acquired soil moisture since their inception (McDowell et al.,

2013). Recently, plant hydraulics theory (Sperry, Adler, Campbell, &

Comstock, 1998), offline models (Bohrer et al., 2005; Gentine,

Gu�erin, Uriarte, McDowell, & Pockman, 2015; Hickler, Prentice,

Smith, Sykes, & Zaehle, 2006; Janott et al., 2011; McDowell et al.,

2013; Williams, Bond, & Ryan, 2001), and datasets (Choat et al.,

2012; Christoffersen et al., 2016; Mar�echaux, Bartlett, Gaucher, Sack,

& Chave, 2016) have improved substantially, giving rise to the poten-

tial for inclusion of “hydrodynamics” (prognosis of moisture states

and fluxes within plants) in LSMs. These methods have shown pro-

mise for improving simulations of carbon, water, and energy fluxes,

particularly during dry conditions (Bonan et al., 2014; Christoffersen

et al., 2016; Fisher, Williams, Lobo do Vale, da Costa, & Meir, 2006;

Fisher et al., 2007; Williams et al., 2001). Prediction of internal plant

moisture status might also allow more realistic representation of

drought deciduousness (Xu et al., 2016), sink limitations on growth

(Fatichi, Leuzinger, & K€orner, 2014), and stress-induced tree mortality

(Anderegg et al., 2012).

Considerable effort is currently being expended on the imple-

mentation of such hydrodynamic schemes within VDMs (Christof-

fersen et al., 2016; Xu et al., 2016). Key challenges include (i)

parameterization of hydraulic trait trade-offs and coordination across

functional types and tissues, (ii) understanding the impact of seg-

mentation of the hydraulic continuum, (iii) representing characteristic

timescales of xylem embolism refilling (Mackay et al., 2015), (iv) link-

ing stomatal responses to plant hydraulic states/fluxes (Bonan et al.,

2014; Christoffersen et al., 2016; Sperry & Love, 2015; Sperry et al.,

2016), (v) integrating plant hydraulic status with existing growth and

allocation schemes and demography, and (vi) integration with appro-

priate benchmarking data.

3.10.1 | Below-ground competition for nutrients

Nutrient cycling (nitrogen, rarely phosphorus) is now represented in

several LSMs (Smith et al., 2014; Wang, Law, & Pak, 2010; Zaehle &

Friend, 2010) yet uncertainties remain concerning the appropriate

representation of many processes (Brzostek, Fisher, & Phillips, 2014;

Xu et al., 2012; Zaehle & Dalmonech, 2011; Zaehle et al., 2014).

VDMs inherit these uncertainties, and are subject to further struc-

tural degrees of freedom, derived from size/age structured represen-

tations of nutrient supply and demand. In principle, similar concerns

of tiling impacts, aggregation, and asymmetric competition apply to

nutrient as well as water uptake. One difference is that nutrients

tend to be more abundant near the ground surface than at depth,

thus may allow for more size-symmetric competition than for water.

An advantage of VDMs is that they might better resolve some fea-

tures of nutrient cycling that are difficult to include in typical LSMs,

such as explicit representation of the successional status of nitro-

gen-fixing vs. nonfixing plants, and release of nutrient competition

following disturbance. Of the models described here, ED2, LPJ-

GUESS, and LM3-PPA have nutrient cycling schemes (Smith et al.,

2014; Trugman et al., 2016; Weng et al., 2016).

3.11 | Vegetation demographics: recruitment &
mortality

g1DVMs typically include representations of plant demography (re-

cruitment, mortality; Sitch et al., 2003; Melton & Arora, 2016).

Where, in g1DVMs, mortality and recruitment rates only impact

mean vegetation biomass and PFT distributions, in size-structured

VDMs, these processes also impact emergent forest structure and

PFT composition, which in turn affect light competition and feed-

back on PFT filtering. There is thus a strong imperative to constrain

demographic processes in VDMs.

3.12 | Mortality

Tree mortality is represented in g1DVMs as either a constant (in

basic models) or as a function of various “proxies”—carbon balance,

hydraulic stress, growth efficiency, plant traits, size, or age (McDow-

ell et al., 2011, 2013). Persistent uncertainty about the major drivers

of plant death means that a consensus on model structure is not yet

justified. Some models now account for several additional sources of

mortality, including biotic damage (Dietze & Matthes, 2014; Hicke

et al., 2012; J€onsson, Schroeder, Lagergren, Anderbrandt, & Smith,

2012), atmospheric pollutants (Dietze & Moorcroft, 2011), wind

damage (Lagergren, J€onsson, Blennow, & Smith, 2012), and herbivory

(Pachzelt, Forrest, Rammig, Higgins, & Hickler, 2015), but relative

importance of these various processes remains unclear. Representa-

tions of height structures and hydrodynamics in VDMs should
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improve the fidelity of mortality proxy prediction, given that mortal-

ity can be strongly related to tree size (Bennett, McDowell, Allen, &

Anderson-Teixeira, 2015; Lines, Coomes, & Purves, 2010; Muller-

Landau et al., 2006).

The likelihood of increased climate-stress related mortality

(Anderegg, Kane, & Anderegg, 2013) has motivated numerous exper-

imental and observational studies in recent years (Anderegg et al.,

2012, 2015; McDowell et al., 2008, 2011, 2013, 2015; Xu, McDow-

ell, Sevanto, & Fisher, 2013; Zeppel, Adams, & Anderegg, 2011). One

goal of this effort is to empirically relate hypothesized physiological

proxies to rates of tree death at relevant scales.

At the scale of individual plants, mortality is a discrete process,

occurring after some threshold of physiological stress is reached. If a

model, however, predicted that all members of a given cohort died

on the day that their average stress exceeded some threshold, that

cohort would be extinguished across the whole landscape. Given

ESM gridcells are often very large (>100 km resolution) this outcome

would be ecologically unrealistic because of heterogeneity within the

real population represented by that cohort. Cohort-based models

therefore require empirical linkages between physiological proxies of

death and mortality rates at the scale of model predictions. On a

stand scale, the population represented by a cohort is heterogeneous

due to variations in resource availability, genotype diversity, her-

bivory, and disease. Across a landscape, the population represented

by a cohort might also encounter heterogeneity in soil texture,

topography, aspect, microclimate, etc. Therefore we expect a looser

connection between average physiological stress and landscape-scale

mortality rates as the scale of prediction increases. In principle, the

slope of the relationship between average physiological stress and

landscape-scale mortality requires scale-dependent calibration

(Figure 3).

3.13 | Recruitment

There is some evidence that establishment rates may be consider-

ably more sensitive to environmental filters than selection of adult

plants, thus, compositional shifts are as likely to be driven by

changes in recruitment as by adult growth and mortality (Ibanez,

Clark, & Dietze, 2008; Ib�a~nez et al., 2009). All demographic mod-

els represent plant recruitment processes (seed production, disper-

sal & germination), albeit simplistically. The rate of seed

production is typically highly idealized; in ED-type models, it is a

fixed fraction of net primary productivity (NPP) for plants that are

in positive carbon balance (Moorcroft et al., 2001). Most VDMs do

not consider dispersal among grid cells, given the complexities of this

process (Nabel, 2015; Sato & Ise, 2012). To simulate germination,

VDMs typically impose a minimum size threshold below which physio-

logical processes and demography are not resolved and the emergence

of new recruits is thus a phenomenological formulation (Farrior et al.,

2013), modulated in some VDMs by climate envelopes (LPJ-GUESS,

SEIB-DGVM), empirical proxies (forest-floor potential NPP, Smith

et al., 2001), or plant traits and environmental conditions (Trugman

et al., 2016).

3.14 | Disturbance regimes: fire & land use

3.14.1 | Fire

Most ESMs contain representations of the impacts of fire, in

g1DVMs, however, the impact of fire-induced tree mortality is sim-

ply to reduce the overall number density (individuals/m2) in the next

timestep (Hantson et al., 2016). VDMs’ tracking of size and age

structure provides three opportunities to improve representation of

fire-vegetation interactions. First, age-since-disturbance structured

models can natively represent disturbance-recovery mosaics that
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F IGURE 3 Scale-dependence in extrapolating cohort-level
mortality proxies to landscape-scale predictions of mortality. (a)
illustrates a plausible multi-annual trajectory for mortality proxies
throughout a chronic drought (solid line) and a hypothetical
threshold whereby decline in this proxy is predictive of death
(dashed line). (b) illustrates potential evolution of between mortality
proxies and numbers of individuals through time (left to right). Long
dashes represent a threshold-based mortality algorithm, whereby all
individuals in a given cohort die in the same timestep. Short dashes
illustrate a scaling from individual to landscape where there is a low
level of heterogeneity across individuals, and the dotted line
illustrates a condition with higher heterogeneity. In this case, parts
of the grid cell (or genetic population) experience mortality at much
lower degrees of average stress, and others are resilient under a
given set of climatic drivers. As local mortality rates (gap scale) vary
in comparison to landscape scale (entire forest), the slope of these
lines requires calibration to a specific spatial scale
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arise as a result of frequent fire regimes and fire-vegetation feed-

back processes (wind speed, flammability, recruitment) within those

regimes. Second, vertical canopy structure can capture size-struc-

tured mortality resulting from fire events and thus represent the

dynamics of the “fire-trap” in savanna-type ecosystems (Hoffmann &

Solbrig, 2003; Hoffmann et al., 2012).

3.14.2 | Land use

Capturing the impact of human land-use and land-cover change on

the carbon cycle, hydrology and other biogeophysical systems is a

key application of ESMs (Brovkin et al., 2013; de Noblet-Ducoudr�e

et al., 2012; Jones et al., 2011; Pongratz, Reick, Raddatz, & Claus-

sen, 2009; Shevliakova et al., 2009). For the CMIP inter-comparison

process, a single consolidated set of land-use transitions are speci-

fied (with carbon estimates from the “ED” model as described

above, Hurtt et al., 2011), providing a matrix of transitions between

land use classes (e.g., primary forest, secondary forest, pasture,

cropland) through time (Lawrence et al., 2016). In traditional LSMs,

land-use transitions must be translated into annual land-cover maps

that specify the fraction of the land surface occupied by each PFT

(Lawrence et al., 2012). A principal advantage of VDMs is that

these land-use transitions can be directly implemented without the

need for translation into PFT fractions, since they can explicitly

simulate ecosystem disturbance and recovery (Shevliakova et al.,

2009).

Representing human managed systems such as croplands, pas-

turelands, and plantation forests also requires the specification of

transitions and management practices (e.g., harvest, grazing; Shevli-

akova et al., 2009; Lindeskog et al., 2013). Implementing standard-

ized representations of these processes directly will emerge as a

challenge as VDMs become more common elements of ESM struc-

ture. A further advantage of VDMs relates to the impacts of shifting

cultivation. The impact of gross land use transitions has been esti-

mated to generate emissions that are 15%–40% higher than the net

transitions alone (Hansis, Davis, & Pongratz, 2015; Stocker, Feissli,

Strassmann, Spahni, & Joos, 2014; Wilkenskjeld, Kloster, Pongratz,

Raddatz, & Reick, 2014). This effect can be captured using age-

since-disturbance mosaic approaches but is not directly possible with

traditional LSMs.

4 | BENCHMARKING VDMS

4.1 | On the need for VDM-specific benchmarking
data

Benchmarking and validation activities for LSMs have become

increasingly numerous and sophisticated in recent years. These

include comparisons against global or regional gridded data products

(Luo et al., 2012), comparisons of relationships between two or more

properties (emergent constraints), comparisons against intensively

measured individual sites (including flux towers; Schwalm et al.,

2010) and against manipulation experiments (de Kauwe et al., 2013;

Zaehle et al., 2014). The International Land Model Benchmarking

Project (www.iLAMB.org) maintains a set of standard benchmarking

products used for this purpose. Expanding this set of standardized

data products to match the scope of VDMs will be a critical chal-

lenge in years to come (Hoffman et al., 2017). In this section, we

describe potential metrics for benchmarking the novel aspects of

VDMs described above. For some components, benchmarking data-

sets are already available, but for many they are scarce. We hope to

illustrate potential platforms for future model-data integration made

possible by the additional realism of VDM components.

Further to this, numerous model intercomparison projects in

recent years have attempted to compare the outputs of large and

complex Earth Systems Model components (including LSMs) against

various types of benchmarking data. Vegetation demographics, in

particular, are the emergent properties of a very large array of other

simulated processes in VDMs, and so it is not clear that a straight

intercomparison between the featured approaches would generate a

clear comparison of how different methods for abstracting ecosys-

tems into models compare. Given the lack of consensus on the para-

metric and structural approaches employed in the physiological and

biophysical algorithms of all said models, it is notoriously difficult to

assign differences in model performance to individual attributes,

such as their demographic representation (c.f. Zaehle et al., 2014).

This difficulty provides a motivation for assessing the skill of individ-

ual component parts (e.g., radiation transfer schemes, hydrodynamic

representations, allocation, mortality, and recruitment models,). Illus-

trating that VDMs have these components in common might provide

a framework for future more refined intercomparison studies

(Table 1).

4.2 | Validation of radiation transfer and canopy
organization

Radiation transfer models have two main components: The first is

the underlying scheme; how radiation interacts with the scattering

elements, reflectance and transmittance properties, and the treat-

ment of diffuse radiation. Validating these representations is argu-

ably an existing field of research, particularly in the realm of

assessing canopy structure from remote sensing data (Smolander &

Stenberg, 2005; Widlowski et al., 2007; Widlowski et al., 2015).

The second feature of VDM RTMs is the assumptions controlling

the arrangement of scattering elements with respect to each other.

For example: Is a discrete-layered PPA-like structure a good approxi-

mation of a forest canopy? How much do adjacent crowns affect

each other’s light interception? These questions might be addressed

using detailed 3D observations on the arrangement of leaves and

crowns in space, via high-density airborne or ground-based LiDAR

(Detto, Asner, Muller-Landau, & Sonnentag, 2015; Stark et al., 2012,

2015), and then applying more complex 3D radiative transfer models

(Morton et al., 2015) to assess how alternate VDM RTM structures

perform. These exercises should be prioritized, since the impact of

size on resource acquisition is such a fundamentally important pro-

cess in determining ecological demographics.
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4.3 | Validation of plant water use

Establishing credible boundary conditions (soil moisture, meteorol-

ogy, vegetation structure) and appropriate validation data (sap flow,

leaf water potential, gas exchange) is a challenging prerequisite for

testing alternative hypotheses about the physics and physiology gov-

erning plant water utilization. The number of locations for which this

validation is possible is small but growing. Such intensive ecosystem

physiology observations have proven extremely valuable, however,

illustrated by their repeated use in model validation exercises (Fisher

et al., 2007; Joetzjer et al., 2014; Matheny et al., 2016; Plaut et al.,

2012; Poyatos, Aguad�e, Galiano, Mencuccini, & Mart�ınez-Vilalta,

2013; Williams et al., 2001; Zeppel et al., 2008). Since plant water

status is fundamentally linked to both height, (on account of gravita-

tional effects) and canopy position (in relation to differing evapora-

tion rates) vertically resolved models are critical to allowing direct

model-data comparison exercises. Christofferson et al., for example,

Christoffersen et al. (2016) illustrate the importance of canopy posi-

tion in correctly simulating daytime leaf water potential at the Caxi-

uana throughfall exclusion experiment in Amazonia, thus, g1DVMs

with aggregated plant water status might be difficult to compare

directly with plant hydraulics observations.

New datasets documenting stem water storage (Carrasco et al.,

2015; Matheny et al., 2015), remotely sensed plant water status

(Konings & Gentine, 2016) and solar induced florescence (Guanter,

K€ohler, Walther, & Zhang, 2016), also have the potential to provide

additional metrics for evaluation of hydrodynamic model predictions.

4.4 | Validation of canopy structure

4.4.1 | Tests against plot-scale size structure data

The canopy structure (tree size frequency per plant type) predicted by

a VDM can be validated using ecological census data from permanent

sample plots. Predicted canopy structure is a high-level emergent

property, however, and is influenced by radiation transfer, photosyn-

thesis, respiration, allocation, and demographics (recruitment and mor-

tality). Thus where discrepancies arise, it is difficult to diagnose the

model specific errors that led to the poor predictive power.

Using the PPA, Farrior et al. (2016) circumvent this problem by

collapsing the details of growth and demographic rates at a given

location into constant rate parameters, which vary only with canopy

status and PFT. This approach successfully captures the size distribu-

tion of a tropical rainforest, in particular, the observed shift in struc-

ture between understory trees (which approximate a power-law

distribution) and canopy trees (which do not). This result highlights

(i) the need to account for asymmetric availability of light across size

classes (in contrast to West, Brown, & Enquist, 1999; Enquist, West,

& Brown, 2009), (ii) that simulation of small-scale disturbances is

critical in the tropics, necessitating a model inclusive of gap forma-

tion and (iii), that representation of the plant canopy as distinct

strata (canopy and one or more understory layers) is a useful

simplification.

4.4.2 | Tests against remote sensing of canopy
structure

Existing Earth Observation products can detect phenological signals

(Hansen et al., 2002) and vegetation stature (Lefsky et al., 2005;

Simard, Pinto, Fisher, & Baccini, 2011). This allows a remote detec-

tion of “traditional” PFTs (defined by phenology and growth habit).

As such, DVMs have historically been tested against these vegeta-

tion classification maps (Arora & Boer, 2006; Bonan et al., 2003;

Fisher et al., 2015; Sitch et al., 2003). Emerging data products that

observe high spectral resolution (i.e., “hyperspectral”) data streams

can be used to discern the properties of plant surfaces, which them-

selves can be linked to leaf or canopy traits (Asner et al., 2012; Shik-

lomanov, Dietze, Viskari, Townsend, & Serbin, 2016; Singh, Serbin,

McNeil, Kingdon, & Townsend, 2015). In principle, VDMs specified

using PFTs that align with traits that can be detected using hyper-

spectral sensing (e.g., leaf nutrient and photosynthetic properties,

moisture/temperature features, leaf thickness & venation) could be

validated using these types of observation (Antonarakis et al., 2014;

Asner et al., 2016; Serbin et al., 2015). Use of LIDAR to detect indi-

vidual tree height and crown diameter (Barbier, Couteron, Proisy,

Malhi, & Gastellu-Etchegorry, 2010; Garrity, Meyer, Maurer, Hardi-

man, & Bohrer, 2011; Hurtt et al., 2004, 2010, 2016; Jucker et al.,

2017; Thomas et al., 2008) can be used to constrain model vegeta-

tion structure predictions.

4.5 | Validation of demographic rates (recruitment,
growth, mortality)

4.5.1 | Tests against plot-scale demographic data

Recruitment, growth, and mortality rates can be estimated from

repeated censuses at permanent sample plots (Lewis et al., 2004;

Phillips et al., 2010). The direct use of plot data is hindered by the

need to drive models with local climate data, however, and as such

is typically limited to more intensively observed field sites (Powell

et al., 2013). Emergent relationships, such as the change in mortality

with environmental gradients (Phillips et al., 2010) other ecosystem

properties such as NPP (Delbart et al., 2010) and regional extrapola-

tion of mortality rates (Johnson et al., 2016; Lines et al., 2010)

should also prove useful as benchmarks that a model might be

expected to capture.

4.5.2 | Tests against remotely sensed demographic
data

Recent developments in remote sensing-based disturbance detection,

including a high-resolution (30 m 9 30 m) global disturbance data-

base (Hansen et al., 2013), provide opportunities to evaluate large tree

mortality events at global scales. At smaller scales, (Garrity et al.,

2013) illustrate the potential for detection of tree mortality using 1 m

resolution QuickBird imagery. Hyperspectral and airborne LIDAR tech-

niques will likely improve our ability to remotely detect tree mortality
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rates (Eitel et al., 2016). Remaining limitations of these approaches

include the fact that they primarily detect mortality of canopy trees

(McDowell et al., 2015), and that issues related to return frequency,

cloud cover, sensor lifetime impact the ability to detect the exact tim-

ing of mortality events, impeding attribution of their drivers.

5 | BROADER ISSUES CONCERNING THE
INCLUSION OF VEGETATION
DEMOGRAPHICS IN ESMS

5.1 | Plant trait information

The use of plant trait data for parameterization of LSMs in general

(Reich, 2014; Reich, Rich, Lu, Wang, & Oleksyn, 2014; Verheijen

et al., 2015) and VDMs in particular has been covered extensively

elsewhere (Fisher et al., 2015; Fyllas et al., 2014; Pappas, Fatichi, &

Burlando, 2016; Pavlick et al., 2013; Sakschewski et al., 2015; Schei-

ter et al., 2012). VDMs are primarily designed as “trait filtering” mod-

els, in that they predict the differential demographic performance (in

terms of growth mortality and recruitment) from plant traits and

environmental conditions, and thus in turn predict/filter the distribu-

tion of those traits across the landscape. The success of trait filtering

approaches is linked to the fidelity with which trait trade-off sur-

faces are prescribed to the model (Scheiter et al., 2012). Designing

balanced trade-offs is a particular concern with this approach.

Specifically, allowing traits to vary such that one particular PFT gains

a large growth advantage -without sufficient attendant cost- will

result in the runaway dominance of that PFT, particularly given posi-

tive feedbacks between growth, resource acquisition, and reproduc-

tive success (Bohn et al., 2011; Fisher et al., 2010, 2015; Pacala &

Tilman, 1994). Deriving balanced trade-off surfaces from plant trait

datasets is also problematic if environmental variation affects plant

trait expression. For example, Reich et al. (2014) find that leaf lifes-

pan of needleleaf trees varies with temperature, breaking the more

typical global correlation with leaf mass per unit area. Thus, geo-

graphical datasets can conflate the causes of trait variability, as can

impacts of shade on trait plasticity (Keenan & Niinemets, 2016). We

strongly advocate for detailed analyses of emerging trait databases

to provide relevant trait relationships for VDM simulations (e.g.,

Christoffersen et al., 2016).

5.2 | Improving informatics

Working with VDMs presents notable challenges in informatics and

statistics due to their complexity, input requirements and output

dimensionality. Recently, model informatics systems have emerged to

meet these challenges, including the Predictive Ecosystem Analyzer

(PEcAn) (Dietze, 2014; Dietze, Lebauer, & Kooper, 2013; LeBauer

et al., 2013). The primary goals of PEcAn are to reduce redundancy and

improve reliability in the workflows associated with running, parame-

terizing, validating, calibrating, and reporting ecosystem models. PEcAn

consists of a suite of open-source workflow and statistical tools

(https://github.com/PecanProject/pecan) and a web interface,

(pecanproject.org). Tools include sensitivity analysis and variance

decomposition, model-data assimilation, Bayesian calibration, as well

as generation of common meteorological drivers, validation data

streams, benchmarking, and visualizations. These common protocols

allow analyses to be replicated across models, making inter-model com-

parison easier. Furthermore, PEcAn employs a database to track work-

flows across researchers and institutions, allowing robust provenance

tracking. PEcAn currently supports ten different ecosystem models,

including most of the models discussed in this paper (ED2, CLM(ED),

LM3-PPA, LPJ-GUESS). PEcAn is an open community project, and is

extensible for novel analyses and modules.

6 | SUMMARY

We describe the major modifications to traditional dynamic vegeta-

tion models that are necessary to allow structured representation of

ecological demographic processes inside the architecture of Earth

System Models. These developments open a number of avenues for

better data-model integration, and highlight gaps in ecological obser-

vation and understanding that we hope could be a major focus of

future scientific endeavor.

Priority areas for VDM development include:

1. Partitioning of solar radiation between competing plant canopies,

and the physics of shading within and between individuals and

cohorts.

2. Representation of plant hydrodynamics in models, and improving

parameterizations and linkages to observations.

3. Distribution of below-ground resources (nutrients and water)

between size classes, PFTs, and patches.

4. Representation of demographic processes (mortality and recruit-

ment), scaling of reductionist physiological models of plant mor-

tality across heterogeneous landscapes, calibration using

emerging remote sensing products, and trait impacts on recruit-

ment rates.

5. Better representation of land use processes and fire disturbance.

For fire, this includes size-structured impacts of burning, as well

as recovery and fire-vegetation feedback processes. For land use

change, challenges include mapping transitions into clear impacts

on ecosystem structure and management and global parameteri-

zation of heterogenous anthropogenic impacts.

These foci integrate many potential avenues for novel model-data-

fusion effort that are made plausible via the implementation of demo-

graphic models. We advocate for more intensive and innovative usage

of ecological data streams in model validation and argue that the many

different avenues for development of VDMs will benefit from coordi-

nated approaches to these topics. The development of common,

widely-available intensive (plot-scale) and distributed (network and

remote-sensing scale) testbeds, accessible via commonly-used online

tools (e.g., iLAMB, PEcAn) will provide the greatest chance of con-

straining future trajectories of the land biosphere in ESMs.
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