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Abstract
Tropical forests are an important part of global water and energy cycles, but the 
mechanisms that drive seasonality of their land-atmosphere exchanges have proven 
challenging to capture in models. Here, we (1) report the seasonality of fluxes of latent 
heat (LE), sensible heat (H), and outgoing short and longwave radiation at four di-
verse tropical forest sites across Amazonia—along the equator from the Caxiuanã and 
Tapajós National Forests in the eastern Amazon to a forest near Manaus, and from the 
equatorial zone to the southern forest in Reserva Jaru; (2) investigate how vegetation 
and climate influence these fluxes; and (3) evaluate land surface model performance 
by comparing simulations to observations. We found that previously identified failure 
of models to capture observed dry-season increases in evapotranspiration (ET) was 
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1  |  INTRODUC TION

Tropical forests play a major role in the global water and energy 
cycles, and modulate tropical atmospheric circulation processes, 
cloud formation, and precipitation (Hagos & Leung, 2011; Held & 
Soden, 2006; Jasechko et al., 2013; Silva Dias et al., 2002; Wei et al., 
2017; Worden et al., 2007). Water and energy fluxes are intrinsi-
cally linked, as energy is required for the phase transition from liquid 
to vapor. Tropical forests evapotranspire the energy equivalent of 
more than half of the total solar energy absorbed by earth's land sur-
faces (Trenberth et al., 2009), helping to maintain high atmospheric 
water content, increase moisture recycling, and mediate cloud 
development (Peters, 2016; Tan et al., 2019). Evapotranspiration 
(ET) mitigates heating as part of the incoming radiation is primar-
ily “consumed” as latent heat (LE) rather than as sensible heat flux 
(H). High ET rates can offset the warming effect associated with 
tropical forest low albedo (the ratio of reflected to incoming short-
wave radiation, SWout/SWdown) driven by its relatively dark surface 
(Bonan, 2008; Yanagi & Costa, 2011). Therefore, land use change, 
fire, climate and extreme weather events (Aragão et al., 2007, 2008; 
Chagnon & Bras, 2005; Davidson et al., 2012) are listed as key fac-
tors determining subsequent changes in tropical forest albedos (neg-
ative climate forcing) and alterations in the evaporative cooling flux 
(positive feedbacks—reducing warming; Bonan, 2008; Li et al., 2015; 
Liu et al., 2019). Measuring and understanding water, radiation, and 
energy seasonal fluxes under present climatological conditions is 
thus needed to forecast the future of tropical forests and global at-
mospheric cycles (Fu et al., 2013; Sena et al., 2018; Spracklen et al., 
2018).

Land surface models (LSMs) represent our mechanistic under-
standing of cause–effect relationships between the surface and the 
atmosphere and constitute ideal tools to forecast water, energy, 
and other biogeochemical fluxes (Pitman, 2003). However, given 
that ecosystem characteristics are diverse and that land–climate in-
teractions are heterogeneous and complex, it is not surprising that 
LSMs have difficulty in reproducing the seasonality of rainforest ET 
(Baker et al., 2008; Christoffersen et al., 2014; Costa et al., 2010; 
Fisher et al., 2014; Restrepo-Coupe et al., 2017). A consistent prob-
lem is that models simulate reductions in ET during the dry season 
(when precipitation is less than ~100 mm month−1), when most ob-
servations from eddy covariance (EC) towers in Amazonia show no 
reductions or even increases in LE, consistent with control by the 
availability of energy (net radiation), and inconsistent with limitation 
by available water (Baker et al., 2008; Christoffersen et al., 2014; 
Costa et al., 2010; Fisher et al., 2007; Restrepo-Coupe et al., 2017; 
Shuttleworth, 1988).

Previous attempts to improve the dry-season LE discrepan-
cies between LSM simulations and observations of tropical for-
ests have been focused on the parameterization of higher soil 
water holding capacity, hydraulic redistribution (vegetation con-
trol mechanisms), deeper roots that can access the lower soil 
layers and/or increase root mass (enhanced pathways) and dy-
namics of stem-water storage (plant hydraulics; Baker et al., 2008; 
Christoffersen et al., 2014; Harper et al., 2010; Lee et al., 2005; 
Yan et al., 2020). Unfortunately, some of these model modifica-
tions appear to drive LSMs to (1) overestimate annual and/or dry-
season ET and/or (2) model simulations could become insensitive 
to drought conditions.

associated with model overestimations of (1) magnitude and seasonality of Bowen 
ratios (relative to aseasonal observations in which sensible was only 20%–30% of the 
latent heat flux) indicating model exaggerated water limitation, (2) canopy emissivity 
and reflectance (albedo was only 10%–15% of incoming solar radiation, compared 
to 0.15%–0.22% simulated), and (3) vegetation temperatures (due to underestima-
tion of dry-season ET and associated cooling). These partially compensating model-
observation discrepancies (e.g., higher temperatures expected from excess Bowen 
ratios were partially ameliorated by brighter leaves and more interception/evapora-
tion) significantly biased seasonal model estimates of net radiation (Rn), the key driver 
of water and energy fluxes (LE ~ 0.6 Rn and H ~ 0.15 Rn), though these biases var-
ied among sites and models. A better representation of energy-related parameters 
associated with dynamic phenology (e.g., leaf optical properties, canopy intercep-
tion, and skin temperature) could improve simulations and benchmarking of current 
vegetation–atmosphere exchange and reduce uncertainty of regional and global bio-
geochemical models.

K E Y W O R D S
Amazonia, climate interactions, ecosystem, eddy covariance flux seasonality, energy balance, 
evapotranspiration, land surface models, tropical forests
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Christoffersen et al. (2014) previously analyzed simulations 
from the same model-data intercomparison investigated here, fo-
cusing on modeled mechanisms of water supply (rooting depth, 
access to groundwater sources, and soil water availability) and 
vegetation demand (intrinsic water use efficiency [iWUE] and sto-
matal conductance) that drive the simulated dry-season reductions 
in ET. Chirstoffersen et al. (2014) identified model underrepresen-
tation of phenological processes (including leaf development and 
associated changes in iWUE) as a cause of the bias. When these 
same LSM simulations were evaluated for their ability to repre-
sent the seasonal dynamics of carbon fluxes in these same tropical 
forests (Restrepo-Coupe et al., 2017), the analysis found that al-
though water limitation was represented in models as the primary 
driver of the seasonality of photosynthesis across Amazonia, the 
LSMs did not accurately represent that seasonality. Observations 
showed incoming radiation and phenological cycles that included 
allocation lags between wood, leaf, and nonstructural carbon, and 
light harvesting adaptations (e.g., leaf demography) dominated car-
bon exchange and in some instances, were not well represented in 
LSMs. Both carbon and water fluxes are significantly influenced 
by tropical forest phenology (Chen et al., 2020; Restrepo-Coupe 
et al., 2017). However, the relationship between vegetation sea-
sonal cycles and the radiation and energy exchange is not well 
documented.

Here, we extend the prior work of Christoffersen et al. (2014) 
and Restrepo-Coupe et al., (2017), building on the consistent finding 
that LE appears to be controlled by net radiation (Rn). If this finding 
is correct, then inherent in the challenge of accurate modeling of ET 
(equivalent LE) is the accurate simulation of the other radiation com-
ponents (LWout and SWout), as well as the accurate partitioning of 
the relevant energy fluxes (e.g., energy allocated to LE and H; Bony 
et al., 2013; Getirana et al., 2014; Longo, Knox, Levine, et al., 2019), 
in addition to the accurate representation of phenological attributes 
(e.g., leaf-age driving seasonal canopy conductance values; Lin et al., 
2015; Medlyn et al., 2011; see Figure 1). Yet, in tropical forests and 
across Amazonia there is scarce information on the seasonal cycle of 
energy-relevant components H, albedo (α), emissivity (εs), the Bowen 

ratio (Bowen = H/LE), and the outgoing and incoming longwave radi-
ation (LWout and LWdown).

Focusing on energy dynamics, we compare forest characteris-
tics and water and energy fluxes from EC and meteorological ob-
servations at four tropical forest sites from the Brasil flux network, 
three Amazonian forests close to the Amazon river (Manaus-K34, 
Tapajós-K67, and Caxiuanã-CAX) and one southern location 
(Reserva Jaru-RJA) to four state-of-the-art LSMs (IBIS, ED2, JULES, 
and CLM3.5; Restrepo-Coupe et al., 2017). The aim of this work is 
threefold: (1) to quantify and characterize the seasonal fluxes (tim-
ing and amplitude) and surface properties of the different water, 
energy, and radiation cycle components; (2) to determine the rela-
tionships between these energy-related fluxes and vegetation and 
climate drivers, as we investigate the ability of other simple models 
and relations to predict ecosystem-level fluxes (e.g., linear regres-
sions between Rn and LE); and (3) to identify areas to refine current 
LSM model formulations and to enhance seasonal LE, H, and Rn sim-
ulations by including vegetation characteristics (e.g., albedo) in the 
analysis and improving the derivation of radiative fluxes (e.g., outgo-
ing SW and LW), with special attention to the inherent coupling of 
carbon, energy, and water cycles (Figure 1).

2  |  METHODS

2.1  |  Site descriptions

Data were obtained at four EC flux tower tropical forest locations 
(Figure 2). All sites were established by the Brazilian-led Large-Scale 
Biosphere-Atmosphere Experiment in Amazonia (LBA-ECO; Keller 
et al., 2004) and members of the Brasil flux network (Restrepo-
Coupe et al., 2013; da Rocha et al., 2004). Three EC stations comprise 
a longitudinal transect close to the equator (~3°S) along the Amazon 
river from east to west, from high to low mean annual net radiation 
(Figure 2) and different seasonal patterns of monthly precipitation: 
Caxiuanã (CAX), the Tapajós National forest near Santarém (K67), 
and the Reserva Cuieiras near Manaus (K34). The fourth site, the 

F I G U R E  1  Parameters and 
mechanisms that govern ecosystem 
water fluxes (evapotranspiration) and 
their seasonality included in this study—
water availability, vegetation response, 
radiation balance, and distribution of 
turbulent fluxes. Colored lines show which 
drivers interact with which parameters/
mechanisms [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Ji-Paraná Reserva Jaru (RJA) forest, is located at the southern mar-
gins of the basin, at latitude 10°S. For a detailed site description, 
refer to previous works by da Rocha et al. (2009), Restrepo-Coupe 
et al. (2013, 2017), and Table S1.

2.2  |  Eddy flux (EC), meteorological and 
biometric data

Sensible heat (H), water (ET) and carbon fluxes (Fc) were measured 
using the EC method (Baldocchi et al., 1988; Wofsy et al., 1993). 
Hourly average covariances were obtained from high frequency ob-
servations (20 Hz) of vertical wind velocity, virtual temperature (Tson; 
°C), and water (H2Omix; mmol mol−1) and carbon dioxide (CO2; ppm) 
mixing ratios measured with a 3D sonic anemometer (CSAT) and 
an infrared gas analyzer (LI6262; Burba, 2010; Foken et al., 2012). 
The LE was calculated as the product of water mass transfer (ET; 
mm day−1) and latent heat of vaporization (λ; MJ kg−1), where LE = ET 
λ. λ was calculated as a function of air temperature (Brutsaert, 1982).

Meteorological observations included: air temperature (Tair; °C), 
relative humidity (RH; %), precipitation (Precip; mm), wind speed (ws; 
m s−1), turbulence measured as friction velocity (u*; m s−1), and the 
following radiation fluxes in W m−2: incoming (SWdown) and outgoing 
shortwave (SWout), and incoming (LWdown) and outgoing longwave 
(LWout). Net radiation (Rn; W  m−2) was defined as the balance be-
tween incoming and outgoing fluxes (Rn = SWdown − SWout + LWdow

n − LWout). A four-dome net radiometer, CNR1 (Kipp & Zonen CM3 

ISO-class, thermopile pyranometer, CG3 pyrgeometer, PT100 RTD) 
was used for the measurement of SWdown, SWout, LWdown, and LWout 
at all sites. The shortwave (SW) or solar radiation was defined as 
broadband radiation between 0.3 and 3 µm and the longwave (LW) 
as radiation with a spectral range from 3 to 300 µm. An independent 
Rn measurement from a single-component radiometer was available 
at K34 and K67.

Hourly data were subject to various quality control proce-
dures: Values found to be outside ±3 standard deviations from the 
mean were removed for ws, RH, and Tair. Analogous and concur-
rent measurements were used to identify periods of instrument 
malfunction (e.g., Tson and Tair) recognized by observations outside 
two times the standard deviations from the linear relationship 
between the variables. Similar to processing carbon flux data, we 
removed LE fluxes measured during low turbulence conditions 
(given a site-specific u* threshold, u*thresh), thus the EC method's 
no-advection assumption does not apply (see Restrepo-Coupe 
et al. 2013; Table S1).

The energy balance was defined as Rn − Δ = LE + H + ΔSh + ΔSc 
+ ΔSb, where ΔSh is the sensible heat storage on the canopy layer 
storage, ΔSc is the energy change due to photosynthetic activity, 
ΔSb is the biomass heat storage, and Δ is the imbalance (Figures S1 
and S2). The Δ term includes measurement errors (e.g., differences 
between the footprint of the radiation sensor and the EC and loss of 
low frequency large-scale eddies) and unaccounted fluxes: ground 
heat flux (G) and changes in the LE flux stored on the air column 
below the EC system (ΔSle). At K34 where profile temperature 

F I G U R E  2  Locations of eddy 
covariance tower study sites in the 
Amazon Basin sensu stricto (Eva & Huber, 
2005). Mean monthly net radiation 
(W m−2) from the Clouds and the Earth's 
Radiant Energy System v4.0 (CERES; 
Kato et al., 2012) for the years 2003–
2018 (NASA, 2019) [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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observations were not available, Δ included ΔSh and ΔSb, as well. 
ΔSh was calculated as the hourly change in temperature across the 
air column (eight, five, and four height levels at K67, RJA, and CAX, 
respectively) multiplied by air density and specific heat at constant 
pressure (Figure S3). ΔSc was defined as the product of gross ecosys-
tem productivity (see Section 2.4) and the specific energy of conver-
sion due to photosynthesis (1.088 × 104 J gCO2

−1; Moderow et al., 
2009). We calculated ΔSb as the product of canopy-specific heat 
capacity (Cveg = 2958 J kg−1 K−1), live wet biomass (mveg; kg m−2) and 
the change in temperature at canopy level (Tcpy; K). See Supporting 
Information for mveg values and Tcpy heights. To flag possible outliers, 
as part of our QA procedures, we used the slope of the regression 
(Rn vs. LE + H + ΔSh + ΔSc + ΔSb) assuming the observations outside 
two times the standard deviations from the linear relationship (see 
Figure S6).

We reviewed the seasonality of the energy balance residual as 
to improve the confidence in our analysis rather than determine LE-
corrected values (i.e., we did not force energy balance closure). Note 
that we observed no statistically significant differences in the sea-
sonal (monthly) energy balance closure (Figures S1 and S5). For an 
extensive review of the energy balance problem, the reader is invited 
to refer to the work of Foken (2008), subsequent studies (Mauder 
et al., 2018; Reed et al., 2018), and our Supporting Information.

At each EC site, meteorological drivers for the LSMs were gener-
ated from the standard suite of climatic variables available for peri-
ods between 1999 and 2006. We analyzed data for 2000–2005 for 
K34, 2002–2004 for K67, 2000–2002 for RJA, and 1999–2003 for 
CAX. Drivers included: LWdown, SWdown, Tair, ws, near-surface spe-
cific humidity (Qair; g kg−1), rainfall (Precip; mm month−1), and surface 
atmospheric pressure (Pa; hPa; Figure 3). The CO2 concentration 
(CO2air; ppm) was fixed at 375  ppm, the average value during the 
period of measurements (de Goncalves et al., 2009). Observational 
data were filled using other nearby meteorological sites and/or 
the mean monthly diurnal cycle; however, only successive years 
with gaps no larger than two consecutive months were accepted. 
Although model drivers were gap-filled, regressions and other cal-
culations presented in this manuscript were implemented using only 
non-filled flux observations and meteorological values. We sampled 
the EC data to match the timing of the model drivers and output.

Biogeochemical fluxes can be sensitive to canopy structure and 
function. For our analysis we used 16-day values of leaf area index 
(LAI), net primary productivity (NPP) allocated to leaves (NPPleaf; 
gC m−2 day−1), wood (NPPwood; gC m−2 day−1), and litterfall (NPPlitter; 
gC  m−2  day−1). Litterfall data were available for all forests and in-
cluded recently published values by Freire et al. (2020) for RJA. We 
used previously published LAI values—see Table S1 for references, 

F I G U R E  3  Annual cycle 16-day average observed climatic drivers (a) precipitation (Precip; mm month−1; gray bars), air temperature 
(Tair; °C; blue line left y-axis) and (b) incoming shortwave (SWdown; W m−2; black line right y-axis) and longwave radiation (LWdown; W m−2; 
blue line left y-axis). (c) Modeled and observed daytime evapotranspiration (ETday, mm month−1); dashed line corresponds to the reference 
evapotranspiration (model ET driven only by meteorology). (d) Model ecosystem scale of model soil moisture “stress” (FSW, where 1 = no 
stress). From left to right study sites (from wettest to driest) near Manaus (K34), Caxiuanã (CAX), Santarém (K67), and Reserva Jaru southern 
(RJA) forests. Gray shaded area is dry season as defined using satellite-derived measures of precipitation (TRMM: 1998–2018). (e) Right-
hand plots correspond to Taylor diagrams for a statistical summary of model (color coded) fluxes compared to observations of seasonal 
fluxes (16-day). Missing sites indicate that the model overestimates the seasonality of observations; the ratio between modeled (σm) and 
observed standard deviations (σ) is >2. Simulations from ED2 (blue), IBIS (red), CLM3.5 (green), and JULES (purple) [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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values, and methods. For a description of biometric sampling meth-
ods, see the original works of Metcalfe et al. (2007), Brando et al. 
(2010), Rice et al. (2004), and Fisher et al. (2007), and for calculations 
and a description of the NPP seasonal values, see Restrepo-Coupe 
et al. (2017).

2.3  |  Surface emissivity (εs), Bowen ratio, outgoing 
longwave radiation (LWout), and other calculations

We used observations of the longwave radiation balance (LWdown 
and LWout) as per the integral of the Planck radiation function, the 
Stefan–Boltzmann equation, to obtain the measure of the surface's 
ability to emit energy by radiation, the Earth's surface spectral emis-
sivity (εs):

where σSB is 5.6704 × 10−8 W m−2 K−4 the Stefan–Boltzmann con-
stant, Tskin is the skin temperature (K), and εa is the effective emis-
sivity of the atmosphere (Jin & Liang, 2006). The equation included 
the reflected fraction of LWdown the second term (

(

1 − �s
)

LWdown

), following Kirchhoff's law, which assumes that absorptivity and 
emissivity are the same for each spectral band (Liou, 2002). We 
used canopy level temperature measurements (lagged as to reach 
a maximum four hours after peak Tair) as a proxy for Tskin (Moderow 
et al., 2009; see Supporting Information section 4). No contact 
thermometry was installed at any of the study sites. We solved 
for εs:

The derivation of εs is a simplification of a complex process: We 
did not account for the vertical variations of Tair, and we neglected 
the re-emission of LW radiation by water vapor. Nonetheless, we are 
measuring LWdown and LWout at the four forests and we see this cal-
culation as an improvement over the assumed emissivity values used 
by some LSMs. Similarly, to identify possible bias on model LWout 
calculations, we solved Equation (2) for Tskin assuming �s values of 
0.99 (see Supporting Information section 4).

Here we include 1-km grid MOD11A2.v6 (Wan et al., 2015), the 
land surface temperature (LST) product to scale and compare Tair 
measurements to satellite-derived LST used by some models on 
their emissivity calculations (Figure S8).

To describe the forest optical brightness, we calculated the day-
time albedo (top of the atmosphere radiation, TOA >200 W m−2) 
as the unitless ratio of outgoing to incoming solar radiation 
(α = SWout/SWdown). We computed the TOA following Goudriaan 
(1986) and set a threshold of TOA and SWdown >200 W m−2 to con-
strain daytime observations. To characterize the heat transfer and 
the partition between water and sensible heat fluxes, we used the 
Bowen ratio calculated as the fraction of H to LE (Bowen = H/LE). 

The Bowen ratio is used by some models as a driver in stomatal 
conductance and photosynthesis calculations (Berry et al., 2013; 
Sellers, 1985).

2.4  |  Vegetation contributions to ET

To quantify the vegetation response to meteorology, we evaluated 
the seasonal differences between observed ET and the reference 
ET (ETref; also known as potential ET). The ETref is solely driven by 
atmospheric demand and climatic parameters and is independent of 
the vegetation water use and soil factors. The ETref was calculated 
following the FAO Penman–Monteith method as:

where γ is the psychrometric coefficient (Cp Pa 103/0.622 λ; kPa K−1), δ 
is the slope of vapor pressure curve (δ = 4098 esat/Tair

−2; kPa K−1), and Cp 
is the specific heat of air at constant pressure (J kg−1 K−1).

We calculated the ecosystem water use efficiency (WUE) as the 
ratio between daytime photosynthetic activity (TOA >200 W m−2) 
measured as the gross primary productivity (GPPday&dry; gC m−2 day−1) 
to ETday&dry over a 16-day period (WUE  =  GPPday&dry/ETday&dry; 
gC mm−1). The ETday&dry (mm day−1) was measured excluding obser-
vations during and 12 h after precipitation, and using only daytime 
data, and was assumed to be the ET dominated by transpiration 
(T) fluxes rather than by direct evaporation (E) from interception 
(e.g., after rain) and from condensation (e.g., dawn measurements). 
Similarly, the TOA threshold removed all early morning–late after-
noon values from the WUE calculations, thus small ET values trans-
lated into abnormally high efficiencies without physical merit. Here, 
we use the term gross primary productivity (GPP) interchangeably 
with gross ecosystem productivity (GEP; gC m−2 day−1) and negative 
gross ecosystem exchange (GEE; gC m−2 day−1), where GPP ~ GEP = −
GEE (Stoy et al., 2006). The GEE was estimated from the measured 
daytime net ecosystem exchange (NEE; gC m−2 day−1) by subtract-
ing estimates of ecosystem respiration (Reco; gC m−2 day−1), which in 
turn were derived from nighttime NEE (GEE = −NEE + Reco). The NEE 
was calculated as the sum of the fluxes measured at the top of the 
tower and the CO2 storage flux (NEE = Fc + SCO2) and filtered for low 
turbulence periods (site-specific u*thresh). Reco was calculated as the 
average within a centered 5-day wide moving window, assuming at 
least eight valid hours of nighttime NEE (we expanded the window 
up to 30 days until sufficient valid data were included). The selected 
Reco moving window accounts for sensitivity to seasonally varying 
soil moisture. Daytime Reco was assumed to be equal to nighttime 
Reco. See Supporting Information and Restrepo-Coupe et al. (2013, 
2017) for uncertainty analysis and additional methods.

To better understand the contribution of vegetation to LE and 
consequently to the partition of turbulent heat fluxes (Figure 1), 
we calculated the canopy stomatal resistance to water vapor (rsV; 
s m−1) and the corresponding canopy conductance (GS; mmol m−2 s−1) 

(1)LWout = �s�SBT
4

skin
+
(

1 − �s
)

LWdown,

(2)�s =
LWout − LWdown

�SBT
4

skin
− LWdown

.

(3)ETref =
�

� + �
Rn,
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following the flux-gradient method as described by Wehr and 
Saleska (2015, 2021; see Supporting Information section 6 for cal-
culations and sensitivity analysis).

2.5  |  Land surface models

We present output from four process-based LSMs that were part 
of the “Interactions Between Climate, Forests, and Land Use in the 
Amazon Basin: Modeling and Mitigating Large-Scale Savannization” 
project (Powell et al., 2013; Restrepo-Coupe et al., 2017). We used 
the Community Land Model-Dynamic Global Vegetation Model ver-
sion 3.5 (CLM3.5; Gotangco Castillo et al., 2012; Oleson et al., 2008; 
Stockli et al., 2008), the Ecosystem Demography model version 2 
(ED2; Longo et al., 2018; Longo, Knox, Medvigy, et al., 2019; Medvigy 
et al., 2009), the Integrated Biosphere Simulator (IBIS; Foley et al., 
1996; Kucharik et al., 2000), and the Joint UK Land Environment 
Simulator (JULES v.2.1; Best et al., 2011; Clark et al., 2011). The LSM 
energy and water cycle dynamics, including how radiation and con-
ductance were calculated by models, are presented in Table S2.

Models compute Rn as the sum of LWdown and SWdown (forcing 
drivers) minus the outgoing energy flux, the LWout and SWout cal-
culated using parameters assigned to a plant functional type (PFT) 
and/or via different canopy radiation transfer models and equations 
(e.g., the two-stream model and the Beer–Lambert law; Fisher et al., 
2018). Later, Rn is partitioned into LE and H. This partition is deter-
mined by atmospheric demand and the amount of water available 
for evaporation and transpiration (if the water supply is exhausted, 
energy will ultimately be spent exclusively on H). If water is available, 
LE will be driven by temperature, wind velocity, available radiant en-
ergy, and will be modulated by Gs and aerodynamic conductance 
(Gi; Figure 1). The Gs, representing the exchange of CO2 and H2O 
between multiple canopy leaves and the atmosphere, is controlled 
by meteorological and edaphic conditions given the ecosystem's 
structure, and by plant trait expressions that determine the photo-
synthetic capacity (e.g., quality and quantity of leaves and stomatal 
behavior). Therefore, Gs links the energy, carbon, and water cycles, 
and constitutes a key vegetation status descriptor for LSMs.

LSMs calculated the downregulation factor for stomatal conduc-
tance due to soil water stress (FSW; also known as the β term) fol-
lowing Oleson et al. (2008; CLM3.5) and Castanho et al. (2016; ED2, 
IBIS, and JULES). The FSW factor ranges from 0 (maximum stress) 
to 1 (no stress).

Model diagnostic variables complied with radiation energy and 
water conservation equations (Equation 4 and 5). The energy bal-
ance residual was always smaller than 1 W m−2:

And the water balance residual was less than 1 × 10−6 kg m−2 s−1, de-
fined by:

where R is surface runoff, GW is subsurface runoff, F is recharge from 
rivers, and Δintercept, Δsrfstor, and Δsoilmoist are changes in interception, 
surface storage, and soil moisture, respectively (all values in units of 
kg m−2 s−1).

2.6  |  Calculating seasonality and comparing models 
to observations

For each hour on the 16-day period we used all available measure-
ments (minimum four observations per hour; Figure S7). We calcu-
lated the mean of the average daily cycle (minimum 22/24 h of the 
cycle was required for calculation of seasonal mean). This method 
avoids assigning less weight to those periods where we have fewer 
measurements. For example, at K34 precipitation was common in 
the late afternoon; therefore, LE, H, and other measurements that 
depend on the sonic anemometer were unavailable during rainfall 
events (Figure S9). Seasonal WUE (GEPday&dry/ETday&dry) and ET/ETref 
were calculated using 16-day ratios. The average annual cycle was 
calculated from all available 16-day periods when at least two meas-
urements were available (2 years of data for each period).

Models were compared to observations based on the timing and 
amplitude metrics of their annual cycle. Correlation coefficient (r), 
root-mean-square difference of model-observations (RMSE), and 
the ratio of their variances were determined for the 16-day multi-
ple years’ time series and the difference in amplitude and timing of 
the seasonal cycle were summarized using the unitless normalized 
standard deviation calculated as the ratio between modeled (σm) and 
observed (σ) standard deviation via Taylor diagrams (Taylor, 2001; 
see Figure 3e for its interpretation). Sites missing from figures indi-
cate that the model overestimated the seasonality of observations 
and σ was >2.

We used Type II linear regressions between fluxes, parameters, 
and variables to understand and quantify the relationships between 
flux drivers and meteorological variables (e.g., H vs. Rn) and between 
ecosystem characteristics and processes (e.g., LAI vs. albedo), thus 
acknowledging both variables carried some degree of uncertainty. 
To describe the statistical significance of regressions, we calculated 
p-values and the coefficient of determination (r2), and the Akaike's 
information criterion, among other descriptors. We compared the 
resulting linear models to simulations (benchmark) to identify key 
flux drivers and determine when and how LSMs can be underutiliz-
ing the available variable information (Abramowitz, 2005; Best et al., 
2015).

3  |  RESULTS

3.1  |  Seasonal meteorology and ET

All sites showed contrasting degrees of seasonality in terms of rain, 
temperature, insolation, and/or day length, including differences in 
the amplitude of the radiation and precipitation annual cycles and 

(4)SWdown − SWout + LWdown − LWout − H − LE − G = ΔSb + ΔSh,

(5)Prec − ET − R − GW + F =
(

Δintercept + Δsrfstor + Δsoilmoist

)

∕dt,
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the timing metrics that define the start, end, peak, and dry-season 
length (Figure 3). Mean annual precipitation at RJA and K67 was 
close to 2000 mm compared to 2500 mm at CAX and K34. The dry 
season varied in length and strength from 1 month long at K34 to 
5 months at K67 and RJA (Figure 3). Although the dry season at K34 
only lasted for 1 month (August), there was a period from July to 
October when the precipitation was lower than the annual mean and 
when we observed above average incoming radiation values (simi-
lar seasonality to K67 and CAX). The number and intensity of pre-
cipitation events was different: (1) CAX with frequent-low intensity 
rainfall (≥250 events month−1 of <0.5 mm h−1), (2) strong seasonal 
changes at RJA (dry season with few lower than 0.5 mm h−1 intensity 
events and wet season with ~50 events higher than 2.5 mm h−1), and 
(3) K67 and K34 close to aseasonal intensities (2.5 mm h−1); however, 
there were fewer events at K67 (≤50 events month−1) compared to 
K34 (≤100 events month−1; Figure S9).

The observed annual cycle of ET showed three different pat-
terns across forests: (1) maximum water vapor flux at the begin-
ning of the dry season declining as the season progressed at the 
two wettest locations (K34 and CAX); (2) a well-defined ET cycle, 
with a middle of the dry-season peak at K67; and (3) an aseasonal 
LE flux at the southern forest of RJA (Figures 3c and 4a). Modeled 
ET showed seasonal synchronicity with observations at the two 
wettest sites (K34 and CAX); however, LSMs overestimated the dry-
season flux by 150–20  mm  month−1 (Figure 3c). At K67 and RJA, 

models exaggerated the amplitude of the water flux seasonal cycle 
by 180–20  mm  month−1. At these drier locations, LSMs predicted 
reductions in dry-season ET that were generally driven by the avail-
able soil moisture, as demonstrated by the statistically significant 
relationship between flux and the plant-available water model diag-
nostic FSW (p < 0.01 r2 from 0.1 (IBIS) to 0.7 (ED2) at K67 and 0.3 
(ED2) to 0.7 (CLM3.5) at RJA; Figure 3d; Figure S10). By contrast, 
observations showed available energy driving ET at all sites (Table 
S3). The slope of the regression between seasonal LE versus Rn (type 
II, zero intercept) was ~0.6 (Figure S11; r2 = 0.7 at CAX, 0.8 at K34, 
0.5 at K67, and 0.1 at RJA). Seasonal Tair and LE showed a significant 
positive correlation (r2 = 0.42, p < 0.01) at only one site, K67 (Table 
S3). The ETday was close to constant (7.7 mm day−1) at the southern 
forest of RJA. RJA was the only forest where we observed no sig-
nificant correlation between Rn and ET (r2 < 0.1, p = 0.9); however, 
the linear model had a low RMSE value (7.78 W m−2). Moreover, all 
site regressions between Rnday and LEday showed RJA observations 
following the general trend (Figure 8).

3.2  |  Partition of net radiation into turbulent fluxes

At the equatorial Amazon forests (K34, CAX, and K67), the 16-day 
cycle of H showed a maximum at the beginning and a minimum at 
the end of the dry season (Figure 4b). By contrast, H was close to 

F I G U R E  4  Annual cycle 16-day average of (a) latent heat flux (LE; W m−2)—energy equivalent of evapotranspiration (ET; mm day−1), and 
model results from a linear regression between LE and Rn (dashed black line). (b) Sensible heat flux (H; W m−2) and (c) unitless Bowen ratio 
(Bowen = H/LE). From left to right study sites (from wettest to driest) near Manaus (K34), Caxiuanã (CAX), Santarém (K67), and Reserva Jaru 
southern (RJA) forests. Observations (black line) and corresponding standard deviations (σ) (dark gray shaded area) and simulations (color 
lines) from ED2 (blue), IBIS (red), CLM3.5 (green), and JULES (purple). Light gray shaded area is dry season as defined using satellite-derived 
measures of precipitation (TRMM: 1998–2018). Right-hand plots correspond to Taylor diagrams for a statistical summary of model (color 
coded) fluxes compared to observations of seasonal fluxes (16-day). Missing sites indicate that the model overestimates the seasonality of 
observations; the ratio between modeled standard deviation (σm) and σ is >2 [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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aseasonal at RJA (a slight increase by the middle of the dry period). 
Models were able to capture the seasonal cycle of H at CAX; how-
ever, the dry-season H was underestimated by most of the LSMs at 
K34. LSMs overestimated LE and were out of phase with observa-
tions at K67 and RJA (Figure 4b). At K34 and RJA, the relationship 
between observed H and LE was weak (r2 < 0.2, p < 0.01) and sig-
nificant at CAX and K67 (r2 = 0.6, p < 0.01; Figure S11). At RJA and 
CAX, measurements of Rn explained 50% of the H seasonal variabil-
ity. Moreover, H was significantly correlated with Rn, the slope (zero 
intercept) varying from 0.12 at K67, 0.15 at CAX and RJA, to 0.22 at 
K34 (r2 ~ 0.4, p < 0.01; Figure S11).

Observations showed that Bowen ratio values were nearly con-
stant at ~0.32 for K34 (highest) and at ~0.21 for RJA and K67 (low-
est among forests). We found that the Bowen ratio for the four LSMs 
was lower than the observed value at the two wettest locations 
(K34 and CAX) and above measurements at the two driest forests 
(K67 and RJA). Simulations showed a strong increase in Bowen ratio 
during the dry season at K67 (IBIS and ED2) and at RJA (all models; 
Figure 4c).

Hourly and seasonal observations showed a good seasonal en-
ergy balance closure (slope LE + H vs. Rn) ranging from 90% (CAX), 
88% (K67 and K34) to 83% (RJA; Figures S1 and S2). By comparison, 
FLUXNET sites have an average imbalance of ~20% (Wilson et al., 
2002). Where profile temperature data were available, the introduc-
tion of canopy and biomass heat storage improved the overall hourly 

balance, especially the energy closure at dawn and dusk (see Figure 
S3). Δ showed a statistically significant correlation to Rn (Δ ~ 0.1Rn, 
r2 > 0.8, p < 0.01) and no correlation with turbulence, Tair, or rainfall 
(Figures S3 and S4). Therefore, we had no indication of lost fluxes 
due to advection (low u*) or errors associated with turbulence bursts 
(high u*). At CAX, frequent rainfall events made EC measurements 
challenging, and extensive periods of data needed to be removed 
(causing gaps in many regressions and figures). Rainfall events at 
CAX were less intense; however, they were more frequent than at 
any other site (see Figure S9).

3.3  |  Radiation balance: Outgoing longwave 
(LWout) and reflected shortwave (SWout) radiation

The SWout is determined by the surface reflectance (e.g., we see 
low SWout values in dark bodies, and high values in bright bod-
ies) and its relation to SWdown is measured as albedo (α; Figure 5). 
Seasonality of α showed modest increases as the dry season pro-
gressed at all sites and was in-phase with the radiation seasonal 
cycle (Figure S15). Peak α values (when forest was at its brightest) 
were observed by the middle of the dry season at the equatorial 
Amazon sites (CAX, K34, and K67) and at the end of the dry pe-
riod at RJA (Figure 6a). The average α was 0.12 at RJA, K34, and 
K67, and 0.09 at CAX. Negative regressions between precipitation 

F I G U R E  5  Annual cycle 16-day average of (a) outgoing shortwave radiation (SWout; W m−2), (b) outgoing longwave radiation (LWout; 
W m−2), and (c) net radiation (Rn; W m−2; black continuous line), and the sum of turbulent fluxes, sensible plus latent heat flux (H + LE; 
W m−2; black dotted line). From left to right study sites (from wettest to driest) near Manaus (K34), Caxiuanã (CAX), Santarém (K67), and 
Reserva Jaru southern (RJA) forests. Observations (black line) and corresponding standard deviations (σ) (dark gray shaded area) and 
simulations (color lines) from ED2 (blue), IBIS (red), CLM3.5 (green), and JULES (purple). Light gray shaded area is dry season as defined 
using satellite-derived measures of precipitation (TRMM: 1998–2018). Right-hand plots correspond to Taylor diagrams for a statistical 
summary of model (color coded) fluxes compared to observations of seasonal fluxes (16-day). Missing sites indicate that the model 
overestimates the seasonality of observations; the ratio between modeled standard deviation (σm) and σ is >2 [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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and α (the forest was darkest at the peak of the wet season) were 
statistically significant at all forests (p < 0.01 with r2 values up to 
0.4 at K67 and K34; Figure S13). The forest characteristics showed 
some degree of correlation: (1) low LAI to high α (negative slope) 
at CAX; and (2) high NPPleaf to high canopy brightness (positive 
slope) at K67, RJA, and K34 (Figure S14). However, at all sites, the 
timing of maximum α did correlate with peak leaf-flush greenness 
index phenocam observations (e.g., Lopes et al., 2016). Models 
overestimated α annual mean across sites and underestimated the 
amplitude of the α seasonal cycle.

Observations showed mean monthly values of SWout close to 
20 W m−2 at most forests (Figure 5a). The models captured the sea-
sonal cycle of SWout at all sites except RJA. The SWout was signifi-
cantly correlated with SWdown (r2 = 0.9 at K34 and RJA, 0.7 at K67 
and r2 = 0.5 at CAX; p < 0.01), with the slope of their linear rela-
tionship increasing from wet to dry forests, such as 0.12 at K34 and 
CAX, 0.13 at K67 and 0.14 at RJA (Figure S15). Seasonal LWout was 
significantly correlated with LWdown; however, R2 values were low 
(r2 = 0.34 at K34, 0.5 at K67 and r2 = 0.2 at CAX and RJA, p < 0.01) 
with a positive slope at K34 and RJA and a negative regression 
(LWdown increased faster than LWout and surface-canopy tempera-
ture warming at a lower rate than the air) at CAX and K67 (Figure 
S17). At K67, CAX, and RJA, models captured the amplitude of the 
seasonal LWout cycle; however, at K34, the LWout of all model simula-
tions was out of phase with observations (Figure 5b).

The amplitude of the annual surface emissivity (εs) cycle rep-
resenting the ability of the surface to emit longwave radiation 
showed high dry-season values at RJA and CAX (Figure 6b). By 
contrast at CAX, observations showed low wet-season εs values. 
At K34 and K67, observed εs were higher than 0.98 and close 
to 0.95 at RJA. We found statistically significant correlations 

(– <0.01, r2 range 0.3–0.8) between εs and rainfall (positive) and 
Tair (negative) at K34 and vice versa at CAX—no significant correla-
tion was observed at K67 and RJA (Figure S13). LSMs generally did 
not capture the magnitude or seasonality of εs, and no LSM aligned 
with observations across all sites (Figure 6b). Assuming constant εs 
values of ~0.99 in agreement with satellite measurements (Figure 
S8) showed models either overestimated Tskin (~1 to 5°C) or under-
estimated εs (Figure S12).

3.4  |  Ecosystem characteristics and contributions 
to water and energy flux seasonality

The ratio between observed ET and ETref can be used to identify 
the periods when ET does not show any signs of water-supply 
limitation and the flux is mostly driven by atmospheric demand 
and solar radiation (Figure 3c; Figure S19). Only during the wet-
test months at K34 we observed ET equivalent to ETref (ET/
ETref  ~  100%) and ~70% during the driest period (Figure 7a). In 
general, the slope of the regression between ET and ETref varied 
from 0.66 (RJA) to 0.74 (K67 and K34), with statistically significant 
differences between wet and dry-season values only seen at RJA 
and K34 (Figure S19).

The vegetation control over ET, here represented by Gs, 
showed different degrees of seasonality and trends across for-
ests (Figure 7b); nevertheless, minimum values were observed 
at various times during the dry season at all sites: (1) At CAX, 
the dry-season Gs was close to 0.4  mmol  m−2  s−1 and up to 
1.4  mmol  m−2  s−1—the highest Gs values were observed at this 
site; (2) at K34 and K67, the Gs gradually decreased from the tran-
sition wet-to-dry period to reach minimum values at the onset of 

F I G U R E  6  Annual cycle 16-day average of (a) albedo—the ratio of outgoing to incoming shortwave radiation (α = SWout/SWdown), and 
(b) surface emissivity (εs). From left to right study sites (from wettest to driest) near Manaus (K34), Caxiuanã (CAX), Santarém (K67), and 
Reserva Jaru southern (RJA) forests. Observations (black line) and corresponding standard deviations (σ) (dark gray shaded area) and 
simulations (color lines) from ED2 (blue), IBIS (red), CLM3.5 (green), and JULES (purple). Light gray shaded area is dry season as defined 
using satellite-derived measures of precipitation (TRMM: 1998–2018). Right-hand plots correspond to Taylor diagrams for a statistical 
summary of model (color coded) fluxes compared to observations of seasonal fluxes (16-day). Missing sites indicate that the model 
overestimates the seasonality of observations; the ratio between modeled standard deviation (σm) and σ is >2 [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the rainy season. (3) RJA experienced a reduction in Gs mid wet 
season to mid dry season (an all site minima of 3 mmol m−2 s−1). 
Models were able to capture Gs at most forests; however, they 

underestimated the amplitude of the annual cycle at K34 and 
CAX (Figure 7b). The trade-off between losing water through 
transpiration and gaining carbon showed different patterns 

F I G U R E  7  Annual cycle 16-day average of (a) ratio between the observed and reference evapotranspiration (ET/ETref), (b) canopy stomatal 
conductance (Gs; mmol m−2 s−1), and (c) daytime water use efficiency where ET and GEP were sampled during dry conditions (no rain in prior 12 h) 
assuming transpiration drives water fluxes (WUE = GEPdry&dry/ETdry&dry; gC mm−1). From left to right study sites (from wettest to driest) near Manaus 
(K34), Caxiuanã (CAX), Santarém (K67), and Reserva Jaru southern (RJA) forests. Observations (black line) and corresponding standard deviations (σ) 
(dark gray shaded area) and simulations (color lines) from ED2 (blue), IBIS (red), CLM3.5 (green), and JULES (purple). Light gray shaded area is dry season 
as defined using satellite-derived measures of precipitation (TRMM: 1998–2018). Right-hand plots correspond to Taylor diagrams for a statistical 
summary of model (color coded) fluxes compared to observations of seasonal fluxes (16-day). Missing sites indicate that the model overestimates the 
seasonality of observations; the ratio between modeled standard deviation (σm) and σ is >2 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  8  Relationships between seasonal 16-day average values of (a) canopy stomatal conductance (Gs; mm s−1) and the ratio between 
sensible (H; W m−2) and latent heat flux (LE; W m−2), the unitless Bowen ratio (Bowen = H/LE); (b) Gs and daytime net radiation (Rnday; W m−2); 
(c) daytime LE (LEday; W m−2) and Rnday; and (d) daytime H (Hday; W m−2) and Rnday. Panels may include a linear regression for all available data 
(black line) and single regressions fitted for each site and seasons (color lines): Manaus (K34), Caxiuanã (CAX), Santarém (K67), and Reserva 
Jaru southern (RJA) forests if statistically significant. Seasons classified using satellite precipitation TRMM values (1996–2018), dry (rainfall 
<100 mm month−1), and wet period (>100 mm month−1) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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across sites, suggesting leaf-level adaptations and ecosystem-
level variation. For example, seasonal Gs showed a negative re-
lationship to incoming radiation at K34, RJA, and during the dry 
season of K67 (r2 < 0.3, p < 0.01). By contrast, higher SWdown cor-
related with high Gs at the very seasonal forest of CAX (where 
we observed the highest wet period rainfall values among the 
four forests) and during the wet season at K67 (Figure 8b; Figure 
S20). In general, Gs was positively related to precipitation (Figure 
S21).

The ratio between ecosystem carbon uptake and tran
spiration-dominated ET, here presented as WUE was correlated 
with Gs at CAX (negative, r2 = 0.25, p < 0.01) and RJA (positive, 
r2 = 0.48, p < 0.01; Figure S22). A significant regression was ob-
served at K67 only if Gs was lagged by 2 months (minimum WUE 
preceded minimum Gs; Figure 7b). The WUE changes were non-
significantly correlated to Gs at K34. Minimum WUE values were 
observed at the beginning of the dry season at equatorial sites 
(CAX, K34, and K67) and at the end of the dry period at RJA. The 
largest values of WUE, indicative of the highest photosynthetic 
rate per water use, were observed at different times for different 
sites when precipitation was >100 mm month−1 (start of at K34 
and K67 and end of the wet season at RJA all at ~2.6 gC mm−1; 
Figure 7c). Most models were able to correctly estimate seasonal 
values of WUE and Gs, some overestimating Gs values at K34 and 
WUE at K67.

We used the Bowen ratio to describe the dominant type of heat 
transfer across the forests—where LE clearly dominated the turbu-
lent flux (H < 0.2 LE). The relationship between Bowen ratio and Gs 
showed that at relatively high Bowen values >0.3, the Gs reached 
a minimum of ~0.35 mmol m−2 s−1 (no further reductions were ob-
served; Figure 8a).

4  |  DISCUSSION

This study identified three main tropical forest properties (rela-
tionships among fluxes and between fluxes and vegetation char-
acteristics) that if understood and implemented in LSM equations 
and/or benchmarking exercises could reduce the differences be-
tween observations and model estimates of seasonal ET, Rn, and H 
exchange: (1) Turbulent flux partitioning (e.g., high correlation be-
tween Rn and both turbulent fluxes, and nearly aseasonal Bowen 
ratio values), (2) representation of canopy reflectance and emissiv-
ity (e.g., albedo's annual cycle showed significantly lower absolute 
values and greater than expected amplitudes), and (3) endogenous 
ecosystem or physiology-related seasonality (e.g., leaf-level sto-
matal and WUE dynamics driven by leaf ontogeny and demogra-
phy). These processes are related to surface energy properties, 
canopy-atmosphere water dynamics, their interactions, and more 
importantly the coupling between energy carbon and water ex-
change. Here, we discuss some of our findings and suggest future 
observational and modeling work to improve simulations of tropi-
cal water and energy fluxes.

4.1  |  Determinants and distribution of net radiation 
into turbulent fluxes

Observations showed ET to be driven by radiation rather than by 
moisture availability as predicted by models. The Rn was able to ex-
plain more than 60% of the 16-day LE values and although we report 
a low r2 for the LE versus Rn regression at the southern forest of RJA, 
the coefficient of determination was driven by the low amplitude of 
the seasonal LE and Rn flux rather than the linear regressions not 
being able to predict LE.

Analysis of variability of the observed Bowen number annual 
cycle showed a nearly aseasonal ratio (~0.3 at the wet sites of K34 
and CAX, and 0.21 at the dry sites K67 and RJA; Figure 4c). This sug-
gests a proportional scaling of the forest's energy balance at each 
location (H was a constant fraction of LE). There was a relationship 
between the direction of bias in Bowen ratio estimates and site an-
nual precipitation. LSMs overestimated dry-season Bowen values at 
the driest locations of K67 and RJA and underestimated the ratio 
at the wettest forests of K34 and CAX (models overestimated LE 
and underestimated H; similar to Best et al., 2015; Haughton et al., 
2016; Morales et al., 2005). The expectation of a higher Bowen ratio 
(increase importance of H over LE) at the drier sites did not apply 
at these tropical forests and could be explained by: (1) LSMs had 
a negative bias in dry-season Rn. (2) Models underestimated dry-
season LE, probably based on the incorrect assumption that water 
limitation (supply) rather than radiation (demand) drove the water 
flux (Federer, 1982). (3) LSMs may have difficulties simulating access 
to soil water at clay soils (e.g., K67) and although some recent model 
improvements have addressed this issue (e.g., ED2; see Longo, Knox, 
Levine, et al., 2019), measurements of field capacity and hydraulic 
conductivity were unavailable at our and other similar study sites. 
(4) To accurately estimate transpiration may require to include pro-
cesses related to plant hydraulics, like the addition of stem-water and 
other additional storage terms (e.g., CLM5; see Yan et al., 2020). (5) 
The time of rainfall, precipitation intensity, and number of events 
(here we report significant differences among forest sites), rather than 
absolute precipitation values, may significantly influence the H/LE 
partition. Rainfall characteristics and forest canopy structure (see 
item 6) can be key in defining how much water would be intercepted 
(directly evaporated), drained, and/or infiltrated (stored and later 
supplied). (6) Models may be assuming excess E from leaves surfaces 
(e.g., because of the high LAI forest values) and not enough water 
would be reaching the soil for infiltration during the wet season. This 
“water deficit” would be carried out into the dry season, limiting the 
moisture available for transpiration and artificially increasing H.

4.2  |  Representation of canopy reflectance 
(albedo) and thermal properties

Although significant, the differences between modeled-observed 
ET cannot be explained solely by the way models partition H and 
LE fluxes (Haughton et al., 2016). This study shows that correct 
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turbulent flux estimations require reliable Rn estimates. Most LSMs 
were able to capture the seasonal cycle of Rn. Thus, SWdown was 
provided to all models as a meteorological driver and dominated Rn. 
However, at CAX and RJA, both model LWout and SWout were higher 
than observations and consequently, seasonal values of Rn were un-
derestimated. In some instances, the model-observation alignment 
was the result of obtaining the right answer for the incorrect reasons 
(e.g., LSMs overestimated SWout and underestimated LWout at K34). 
Models that consistently estimated higher than observed LWout val-
ues may have to address the following issues: (1) the vegetation stor-
age pool/heat capacity may be too low and/or (2) underestimated 
transpiration values, both causing Tskin to be too high. Additional 
measurements (e.g., thermal cameras, sapflow sensors, soil moisture 
profiles, and H2O isotopes) would be necessary to measure Tskin, to 
infer the relationships between LE, H, and vegetation temperature, 
and to understand the mechanisms driving the relations between 
LWdown and LWout.

Biases in LSM Rn can also be attributed to SWout calculations. 
Observed low albedos did contrast with model simulations resulting 
in more reflective (brighter) forest surfaces. Models underestimated 
the amount of canopy-absorbed energy and may be imposing an “ar-
tificial” cooling effect. Surface albedo will be highly dependent on the 
leaf spectral properties and in general, canopy reflectance models 
attribute low albedos to high LAI values (e.g., PROSAIL [Féret et al., 
2017] assumes albedos ~0.2 for a LAI>4) or albedos are parameterized 
as a constant (Hollinger et al., 2010). Nevertheless, we observed oppo-
site sign regressions between LAI and albedo at CAX, thus indicating 
that α was not only driven by the quantity of leaves, but by leaf quality 
and vegetation reflective surfaces (e.g., wood and epiphylls; Chavana-
Bryant et al., 2016; Wu et al., 2017). Across the Amazon, leaf phenol-
ogy has shown to be a key driver of ET and carbon uptake (Albert et al., 
2018; Chen et al., 2020; Manoli et al., 2018; Restrepo-Coupe et al., 
2013; Wu et al., 2017) and should be incorporated/improved on the 
derivation of energy, radiation, and water fluxes, as well.

4.3  |  Ecosystem characteristics and their 
contributions to water and energy flux seasonality

Our results showed that when H was higher than 20% LE, Gs reached 
a minimum of ~0.35 mmol m−2 s−1, with no further reductions, in-
dicating that the vegetation continued to transpire at the same or 
higher rate under relatively high Bowen ratio conditions. This finding 
may be not surprising as Stahl et al. (2013) found that during low pre-
cipitation periods 50% of a sample of 65 large tropical trees relied on 
soil water below 1 m depth, and others have reported hydraulic re-
distribution, stem-water storage, and additional processes that may 
explain forests’ access to water during the dry season (Christoffersen 
et al., 2014; Oliveira et al., 2005; Yan et al., 2020). Moreover, the 
gradual dry-season decrease in Gs (as also reported in Christoffersen 
et al., 2014 and Costa et al., 2010) and increase in LE observed at the 
equatorial forests highlights the very significant role of evaporation 
during this period. However, only seasonal inventories of leaf age 

and traits, and evaporation versus transpiration measurements (e.g., 
H and O isotopes) will offer models validation data to avoid misrep-
resentation of the plant water exchange (e.g., under/overestimating 
photosynthesis and WUE; Lawrence et al., 2007).

Leaf-level stomatal conductance (gs) is expected to maximize 
carbon uptake while also reducing water loss from leaves (or re-
ducing the carbon cost of hydraulic failure) when water is limiting 
(Anderegg et al., 2018; Medlyn et al., 2011; Sperry et al., 2017), and 
generally is site-specific and driven by adaptation to different atmo-
spheric seasonal drivers (Brum et al., 2018). Ecosystem-level vege-
tation controls (e.g., LAI and leaf age and position across the canopy 
profile) determine the water flux, rate of photosynthesis, and the 
“acceptable” degree of water stress the forest can tolerate during 
the dry season (Albert et al., 2018; Restrepo-Coupe et al., 2013; Wu 
et al., 2017). Similar to Gs, at all four forests we observed contrasting 
degrees of seasonality in terms of WUE (with a range of ±25% of all 
year mean) and its timing metrics. Like GEP, across equatorial forests 
WUE increased as the dry season progressed and vice versa at RJA. 
At the ecosystem scale we found that the regression between WUE 
and Gs was not statistically significant at K34 and K67, negatively 
correlated at CAX and positively at RJA (Figure S22). The lack of a 
correlation between Gs and WUE would be driven by seasonal dif-
ferences in intercellular CO2 concentrations, atmospheric pressure 
and humidity, vegetation growth temperature, and other canopy 
characteristics (Lin et al., 2015; Medlyn et al., 2011, 2012). For ex-
ample, higher vapor pressure deficit can increase transpiration and 
reduce WUE without any change in Gs and vice versa.

4.4  |  Considerations for model improvement

This paper describes the seasonal patterns of different energy and 
water flux constituents and examines the relationships between 
them and different forest characteristics and climate variables at 
four tropical forests. We compared EC and biometric measurements 
to LSM simulations, as models represent our current understand-
ing of the different atmosphere–biosphere processes at global and 
continental scales and are the ideal tool to predict vegetation re-
sponses to changes in climate. Our analysis highlights “forest phe-
nology” as a significant driver of vegetation–atmosphere exchange 
and in particular, our data showed LSMs: (1) underestimated the 
amount of solar radiation the forests absorb and dry-season in-
creases because we lack information regarding the relationship be-
tween leaf density and reflectance properties at high LAI values; (2) 
similarly, interception and direct evaporation may be overestimated 
at high LAI forests, and consequently LSMs may be underestimat-
ing infiltration and transpiration fluxes, overestimating canopy tem-
perature, and consequently driving LSM output (3) to inaccurate 
estimations of LWout (e.g., reducing the soil moisture content and 
increased canopy temperature would lead to unrealistically high Tskin 
and hence incorrect estimates of LWout) and SWout (e.g., if we in-
correctly characterize forest structure, albedo will be too high). This 
seasonal bias on the outgoing flux (emissivity and albedo) dominated 
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the model-observation Rn differences and will have an effect in the 
estimation of H, LE fluxes, and the Bowen ratio. Our findings can be 
used to benchmark LSMs and develop more robust PFT parameteri-
zation. Improvements in model development will translate into bet-
ter predictions of future surface–atmosphere exchange.
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