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Pathogen and pest outbreaks are recognized as key processes in the dynamics of Western forest ecosystems,
yet the spatial patterns of stress and mortality are often complex and difficult to describe in an explicit
spatial context, especially when considering the concurrent effects of multiple agents. Blister rust, a fungal
pathogen, and mountain pine beetle, an insect pest, are two dominant sources of stress and mortality to
high-altitude whitebark pine within the Greater Yellowstone Ecosystem (GYE). In whitebark pine
populations infested with blister rust or mountain pine beetle, the shift from green to red needles at the
outer-most branches is an early sign of stress and infestation. In this analysis, we investigated a method that
combines field surveys with a remote sensing classification and spatial analysis to differentiate the effects of
these two agents of stress and mortality within whitebark pine. Hyperspectral remotely sensed images from
the airborne HyMap sensor were classified to determine the locations of stress and mortality in whitebark
pine crowns through sub-pixel mixture-tuned matched-filter analysis in three areas of the GYE in September
2000 and July 2006. Differences in the spatial pattern of blister rust and mountain pine beetle infestation
allowed us to separate areas dominated by mountain pine beetle versus blister rust by examining changes in
the spatial scale of significant stress and mortality clusters computed by the Ripley's K algorithm. At two field
sites the distance between clusters of whitebark pine stress and mortality decreased from 2000 to 2006,
indicating domination by the patchy spatial pattern of blister rust infestation. At another site, the distance
between significant stress and mortality clusters increased from 2000 to 2006, indicating that the contiguous
pattern of mountain pine beetle infestation was the primary source of disturbance. Analysis of these spatial
stress and mortality patterns derived from remote sensing yields insight to the relative importance of blister
rust and mountain pine beetle dynamics in the landscape.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

species, and whitebark pine is an important structural component of
snowpack regulation within Western watersheds (Harris, 1999;

Pathogen and pest outbreaks play an important role in governing
the dynamics of forest ecosystems since they can dramatically alter
the composition and structure of forest communities (Moorcroft et al.,
2001; Tomback & Resler, 2007), which subsequently create feedback
effects to patterns of fire and nutrient cycling (Castello et al., 1995;
Dale et al., 2001; Logan et al., 2003). Within the Greater Yellowstone
Ecosystem (GYE), whitebark pine (Pinus albicaulis) is considered a
keystone species by conservation ecologists that is critical to trophic
functionality (Tomback et al., 2001). Whitebark pine plays an
essential role in altering treeline micro-climate, paving the way for
the establishment of other animal, insect, plant, fungal and microbial
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Logan & Powell, 2001). Most whitebark pine is propagated from the
seed caches of the Clark's nutcracker (Nucifraga columbiana) (Hutch-
ins & Lanner 1982; Tomback, 1982), and these whitebark pine nut
caches of concentrated proteins and lipids are often raided by grizzly
bears (Ursus arctos) as a critical pre-hibernation food source (Mattson
et al,, 1991). In years with poor whitebark pine crops, human-bear
conflict often increases as grizzly bears began searching for food from
other sources, and a decline in grizzly bear populations during the
past ten years has been partially attributed to the decimation of
whitebark pine populations in protected ecosystems south of Canada
(Mattson et al., 1992).

The effects of the blister rust fungus (Cronartium ribicola) and
mountain pine beetle (Dendroctonus ponderosae) dominate stress and
mortality in whitebark pine populations of the Greater Yellowstone
Ecosystem (Tomback et al., 2001). The mountain pine beetle is a
native insect pest, while blister rust is an invasive fungal pathogen
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specific to five-needled pines that was introduced to North America in
1910 and to the GYE more recently (Maloy, 1997). Mountain pine
beetles cause mortality by boring paths through vascular tissue (Miller
& Keen, 1960), and establish a colony within a forest population when
a host tree becomes infected and aggregates a sufficient number of
individuals to overcome tree defenses and establish a brood population,
which results in the reemergence of adults at a rate of about 90
individuals per square foot, killing the entire tree in the process
(Coulson, 1979). The mountain pine beetle is not specific to five-needled
or whitebark pine, and can reside in other pine species in the GYE.
Recovery from mountain pine beetle infestation in whitebark pine is
seldom possible, and mountain pine beetles tend to kill mature
whitebark pine trees within the span of one to three years, turning
the entire tree crown red in the process.

Blister rust populations persist through two alternate hosts during
a five-stage life cycle in the GYE: whitebark pine and one of several
species in the genus Ribes (Mielke, 1943). Two spore stages
(aeciospores and pycniospores) persist on the pines, and the other
three (basidiospores, teliospores, and urediospores) propagate on
Ribes. A whitebark pine becomes infected with blister rust when
basidiospores produced on Ribes enter through the stomata of its
needles (Agrios, 1997). This life history strategy makes blister rust
difficult to both control and predict since the pathogen does not
spread from tree to tree, but instead through wind-borne spores from
the population of its alternate host. The huge range of spatial scales
inherent in the spread of blister rust, from the microscopic spore scale
to the macroscopic ecosystem scale have created difficulties in
analyzing its pathology. Blister rust acts more slowly than mountain
pine beetle within whitebark pine trees, causing inevitable whitebark
pine mortality within a span of fifteen to twenty years. Although
blister rust and mountain pine beetle co-occur within the landscape of
the GYE, we hypothesize that areas dominated by blister rust stress
and mortality will exhibit a pattern of patchy infestation due to the
wind dispersal of spores from Ribes populations, which creates a
pattern markedly different from an outbreak of mountain pine beetle
(Dendroctonus ponderosae), which instead spreads directly from tree
to tree, typically creating a contiguous pattern of mortality at a scale of
less than 1 km during outbreaks (Logan et al., 1998).

Monitoring the effects of mortality caused by pests and pathogens
has been a crucial task for U.S. forest managers since the catastrophic
scale of the chestnut blight in the early twentieth century, but
monitoring multiple mortality agents acting concurrently on the
landscape is a spatially and temporally complex task. While plot-level
forest pest and pathogen studies are collected in small-scale detail and
most large-scale remote sensing studies categorize the extent of
general mortality throughout the landscape, there is a strong desire to
develop and use methodologies that bridge these two scales in order
to develop monitoring tools that are more tractable for forest
managers and more informative for tracking changes in the landscape
through time and predicting future disturbance patterns. Remote
sensing is an ideal tool for monitoring the activity of pests and
pathogens at multiple scales, especially when considering its utility
for monitoring conditions on a continuous spatial surface in remote
areas with difficult access (Roughgarden et al., 1991; Booth & Cox,
2008). While the remote sensing of forest mortality in conifer-
dominated ecosystems through numerous platforms has proven
successful (Boyer et al., 1988; Everitt et al., 1999; Kelly & Meente-
meyer, 2002; White et al., 2004; Bone et al., 2006; Wulder et al., 2006;
Guo et al., 2007) including studies classifying mountain pine beetle
stress and mortality (Skakun et al., 2003; Coops et al., 2006), we could
find no studies to date that have attributed results from the
classification of canopy stress to more than a single cause of stress
and mortality in the landscape. Pest and pathogen field studies
necessarily focus on the plot level and are used to extrapolate through
the landscape. The 2 to 4-meter spatial scale of the HyMap sensor
allows for a continuous monitoring footprint that is a close match to

the spatial scale of blister rust and mountain pine beetle stress and
mortality within individual trees. While the spatial footprint of
HyMap imagery is smaller than that of coarser-resolution remote
sensing platforms such as Landsat, the ability to monitor small-scale
changes in ground conditions makes it ideal for analyzing pest and
pathogen infection patterns where the key to intervention is early
detection. The spatial extent and scale of the HyMap sensor provides
an ideal link between small-scale forest inventories and larger scale
remote sensing imagery. For example, the methodology presented in
this analysis could be used in conjunction with larger scale imagery
such as Landsat to potentially scale up the classification of stress and
mortality. However, HyMap was considered an ideal platform for our
analysis due to its small spatial scale and ability to detect small levels
of stress and mortality at the branch level. Through the analysis of
HyMap imagery, this paper provides a method for determining the
relative contribution of blister rust and mountain pine beetle at three
sites within the whitebark pine landscape of the GYE.

2. Methods
2.1. Study area and field data

This analysis used reflectance data from the HyMap (Sydney,
Australia: HyVista Corporation) airborne hyperspectral sensor, which
records spectral data at 126 continuous bandwidths and has a spatial
resolution of 2-4m, depending on the sensor altitude. The HyMap
sensor was flown over three areas of known whitebark pine stress and
mortality in the GYE on 17 October 2000, and again on 4 July 2006
(Fig. 1). We assumed in this analysis that there is no seasonal variation
in the red-needle indicators of blister rust and mountain pine beetle
damage between October and July. These three sites were selected for
the collection of hyperspectral imagery in consultation with forest
managers from the National Park Service, the U.S. Forest Service, and
the USGS Northern Rocky Mountain Research Center. Sites were
selected for HyMap data collection to include large amounts of
whitebark pine habitat outside of Yellowstone National Park with
varying levels of known blister rust and/or mountain pine beetle
infestation. Other than a small amount of background mortality from
events such as winter storms, forest managers identified blister rust
and mountain pine beetle as the only known widespread causes of
stress and mortality within whitebark pine within this region. The
Daisy Pass site was selected for its absence of blister rust and
mountain pine beetle infestation during preliminary field investiga-
tions during the summer of 2000. The Tom Miner and Red Lodge sites
were selected due to their low level of stress and mortality signs
within whitebark pine during the summer of 2000. The average
elevations of Daisy Pass, Red Lodge, and Tom Miner are 2706m,
2504 m, and 2612 m, respectively.

Within each footprint of hyperspectral imagery at the three sites,
three representative whitebark pine stands with varying levels of
blister rust were identified within the Daisy Pass and Red Lodge site
footprints and two representative stands were identified within the
Tom Miner site footprint. These representative stands, each approx-
imately 300-500 m? in size, were located by field visits to the three
site footprints in fall 2000. Within each of these representative stands,
ten randomly located 5.2-meter radius field plots (80 plots in total)
were established in fall 2000 to evaluate the absence or presence and
cause of stress and mortality of each individual tree within the field
plot. These field plots were all revisited in June and July 2007. In our
analysis, we assume that there are no large seasonal variations
between early summer and early fall (when our field surveys were
conducted) for blister rust or mountain pine beetle symptoms in
whitebark pine trees.

Field plots were located with Trimble XT and Trimble 3 GPS units
with sub-meter accuracy in both 2000 and 2007. At each field plot
located with the Trimble GPS unit, a digital photograph of the tree
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Fig. 1. The three footprints of the HyMap imagery, Tom Miner, Daisy Pass, and Red Lodge, lie just north of Yellowstone National Park, within the boundary of the Greater Yellowstone
Ecosystem. The three sites were selected in consultation with the National Forest Service and the National Park Service to encompass areas of high whitebark pine content and absent

to moderate levels of whitebark pine stress.

crown was collected to visually depict the actual amount of red/dead
needles (Fig. 2). Individual tree data was collected for each field plot
by placing every tree in the plot within one of four health classes:
healthy (needles abundant and green), stressed (needles discolored),
dead (all or nearly all needles red), or snag (needles absent). In
addition, signs of blister rust infection (cankers, rodent chewing and
fruiting bodies) as well as signs of mountain pine beetle infestation
(beetle holes and sapping out) were recorded for each tree. From
these field plots, five plots within each of the hyperspectral footprints
(15 plots in total) were chosen for the classification of whitebark pine
stress and mortality, and the remainder of the field plots (64 plots in
total) is used for the validation of the imagery classification, both
described below.

2.2. Pre-analysis processing of imagery

Prior to our analysis, radiometric error was corrected to onboard
calibration data with the ATREM software package (Boulder, CO:
University of Colorado, Cooperative Institute for Research in the Envi-
ronmental Sciences) and was followed by spectral smoothing with
EFFORT software (Boardman, 1998) in ENVI (Boulder, CO: ITT Visual
Information Solutions) to minimize noise in the final reflectance spectra.
Geometric distortion during HyMap data collection was corrected by
onboard GPS measurements of the x, y, and z coordinates of the sensor
and through inertial motion unit measurements of the pitch, yaw and
roll of the aircraft. Residual geometric error was corrected by manual
georegistration of the 2000 HyMap images to 1-meter resolution digital
orthophoto quarter-quadrangles (USGS, 2001) and then georegistration
of the 2006 HyMap imagery to the 2000 images for each site.

To focus the classification process on pixels with possible stress
and mortality, a spectral mask was created to eliminate pixels
dominated by non-target wavelengths. The mask limits the analysis
according to two wavelength parameters: the NDVI (normalized
difference between red and infrared reflectance) should fall between
0.2 and 1.0 to eliminate pixels dominated by snow, water and light-
colored soils, and the short-wave infrared reflectance should be no
greater than 15% to exclude pixels dominated by dark-colored soils. It
is possible that this mask may have erroneously eliminated the
spectra of some entirely dead trees due to the large amounts of bare

soil that could be included within their spectral signature. However,
the benefit to the classification process from the elimination of non-
vegetation ground materials far outweighs the minimal exclusion of
some dead pixels.

Rather than analyzing the entire breadth of the 126 HyMap bands,
a minimum noise fraction (MNF) transform was applied to each image
in order to reduce the data size and portray only the most
distinguishing spectral characteristics of each image (Green et al.,
1988). An MNF transform is similar to applying a principle component
analysis (PCA) to each image, but whereas PCA condenses data by
maximizing variance, an MNF transform uses the breadth of spectral
wavelengths collected by the HyMap sensor to reduce data by
maximizing the signal-to-noise ratio. Conducting an MNF transform
before mixture-tuned matched-filter classification has a proven
ability in increasing the producer's accuracy (Mundt et al., 2005).
An MNF transform results in an image where variance within the
image has been reduced to a smaller number of bands, facilitating
distinction between features within the scene. In this case, 25 MNF-
transformed bands were included in the analysis.

2.3. Mapping stress and mortality by the MTMF algorithm

In this analysis we use the mixture-tuned matched-filter (MTMF)
algorithm to classify HyMap images for whitebark pine stress and
mortality. The MTMF algorithm has been successfully used with
hyperspectral imagery to classify different soil types (Lewis et al.,
2008), map different plant species (Dehaan et al., 2007), compute
post-fire burn severity (Robichaud et al., 2007), analyze vegetative
indicators of salinization (Dehaan & Taylor, 2003 ), map invasive plant
species (Glenn et al., 2005; Noujdina & Ustin, 2008) and monitor the
pathogen infiltration of powdery mildew and leaf rust in agricultural
stands of winter wheat (Franke & Menz, 2007).

In this analysis, HyMap images were classified for whitebark pine
crown stress and mortality through spectral classification methods
first established in Halligan et al. (2003). The spectral qualities of
chlorophyll and water dominate the reflectance of healthy whitebark
pine, while the structural materials cellulose and lignin dominate the
canopy reflectance of whitebark pines exhibiting stress and mortality
(Fig. 3). Accordingly, reference spectra for stress and mortality were
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Fig. 2. An example of ground-collected GPS-tagged digital photographs to collect the reference spectrum for red/dead needles in whitebark pine crowns. This field data was collected

at the Red Lodge site in August 2006.

collected from five field plots encompassing varying levels of crown
stress and mortality within each of the three hyperspectral images (15
training plots in total). These field plots in total provided 8-10 stress
and mortality training pixels per image in 2000 and 14 stress and
mortality training pixels per image in 2006. All training pixels used in
the classification are unique to the site footprint and year in which
they were collected. Mean pixel values were calculated from each
training pixel to derive the reference spectrum for stress and
mortality within that image.

The identification of whitebark pine stress and mortality was
computed by the MTMF algorithm, which is a form of spectral mixture
analysis that unmixes pixels and matches pixels in the image to the
endmember spectra by maximizing the target response and mini-
mizing background spectral signatures. The MTMF algorithm consists
of two steps. First, a set of training pixels was used to define the
characteristic reference spectrum for whitebark pine stress and
mortality. Second, all pixels in the image containing a portion of the

reference spectrum are spectrally unmixed and classified. The MTMF
algorithm is described by:

- —

rj=doa+ Uy+n (1)

where7 represents the spectral signature of the pixel at location ijj, d is
the spectrum of the target to be mapped (in this case the image
reference spectra for stress and mortality), « is the abundance fraction
of the desired endmember, U represents the mixed spectrum of
undesired endmembers, y is the abundance fraction of undesired
spectral endmembers, and n is Gaussian noise (Harsanyi & Chang,
1994). The MTMF algorithm was constrained so that abundance
fractions are positive and solved for the abundance fraction of the
desired endmember in each pixel throughout the image. Computation
of the MTMF resulted in an output image with two component vectors:
matched-filter score that describes the abundance fraction of the target
endmember, and infeasibility that quantifies the noise for each pixel in
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Fig. 3. Spectral classification of red/dead flagging in whitebark pine is possible because
of differences in the reflectance spectra of green, red and dead whitebark pine crowns
derived from the imagery of the HyMap sensor. Differences between the reflectance
properties of chlorophyll, water, cellulose and lignin create distinguishing spectra for
the three different classes of whitebark pine stress.

units that scale with the matched-filter score (higher target endmember
abundance fractions have lower noise variance). The two component
output images of infeasibility and the matched-filter score were then
thresholded to maximize the inclusion of true red/dead pixels
(maximizing matched-filter score) and minimize the inclusion of false
positives (minimizing infeasibility). A threshold was selected for each
image that attempted to achieve maximum classification accuracy by
selecting 80% of the pixels that fell on either side of a 1:1 plot of
matched-filter score versus infeasibility for each image. This threshold
was computed separately for the stressed class and the dead class for
each image.

Within this analysis, stress and mortality are merged into one class
post-classification, and the spectral abundance fractions are con-
verted into the binary presence or absence of stress and mortality. We
merge the two classes of stress and mortality in this study in order to
apply a spatial analysis that investigates the total effects of pests and
pathogens within the image footprint. By merging the stress and
mortality classes, we assessed the overall spatial patterns resulting
from the progressive effects of the pests and/or pathogens rather than
assessing solely the pattern of stress or mortality.

2.4. Classification assessment

Excluding the five field plots from each of the three hyperspectral
footprints used in the MTMF classification process, the remainder of
the field plots (64 total plots) established in 2000 and revisited in
2007 are used for the classification assessment of the MTMF stress and
mortality mapping. The classification error for stress and mortality
was calculated by taking into account both errors of commission
(erroneous inclusion of pixels) and errors of omission (erroneous
exclusion of pixels). The tree-level field data collected was classified
into three categories: mapped in classification and definitely red/dead
in the field (true positives), mapped and not red/dead (false
positives), and unmapped and possibly red/dead (false negatives),
from which producer's and user's accuracies were calculated. The
producer's accuracy describes the ability of a classification scheme to

accurately place pixels into the desired classes and measures errors of
omission, while the user's accuracy describes the probability that a
sample from ground conditions will fall within the correct class,
measuring errors of commission.

2.5. Spatial analysis

Using the MTMF stress and mortality classification with informa-
tion about the life history strategies of blister rust and mountain pine
beetle, we used spatial statistics to separate the spatial mortality
patterns of blister rust and mountain pine beetle operating in the
same ecosystem. As we show here, once stress and mortality patterns
are classified across the landscape through remotely sensed imagery,
it is possible to use the spatial statistical approach of the Ripley's K
equation to analyze pathogen patterns within each of the three
selected sites measured with the hyperspectral sensor in both 2000
and 2006. The Ripley's K function has proven utility for analyzing
spatial vegetation patterns over the landscape (Haase, 1995), and has
been applied to patterns of invasive species (Call & Nilsen, 2002;
Suzuki et al., 2003; Deckers et al., 2005) and forest mortality
(Szwagrzyk & Czerwczak, 1993; Peterson & Squiers, 1995; Moeur,
1997; Chen & Bradshaw, 1999; He & Duncan, 2000). Within studies of
forest pathogens, the Ripley's K function has been applied to analyzing
the spatial pattern of the invasive Sudden Oak Death (Kelly &
Meentemeyer, 2002) as well as to analyze increased fire risk due to
pathogen-induced tree mortality (Lynch et al., 2006). In this analysis,
we used Ripley's K equation to quantify changes in the spatial extent
to which whitebark pine stress and mortality in different areas arises
from blister rust versus mountain pine beetle.

Ripley's K function (Ripley, 1976, 1981) was used to quantify the
extent of spatial clustering in whitebark pine stress and mortality in
each image. Ripley's K function is described as:

_ 1 NN
K(s) = W; EI I5(dy) @)

where for distance s at location ij, A is the intensity of the point
process (the number of events divided by A), A is the total study area,
and Iy(dy) is the indicator function that equals one on the distance
interval d;; between i and j<s and zero on d; between i and j>s
(Bailey & Gatrell, 1995). Defined as the average number of events (in
this case, classified stress and mortality pixels) within circles with a
diameter of a defined distance interval centered on each event
occurrence, divided by the mean intensity of events throughout the
image, Ripley's K function can be used to determine the scale at which
stress and mortality clustering occurs. Stress and mortality pixels
within one distance event of the edge were mirrored in order to
reduce edge effects inherent in executing the Ripley's K algorithm on
a bounded point pattern (Haase, 1995; Goreaud & Pelissier, 1999).
Confidence intervals for the computed Ripley's K function were
calculated through 1000 Markov-chain Monte Carlo iterations.

The Ripley's K algorithm was computed for all of the six classified
red/dead point patterns, and for each of the three study sites, the red/
dead point pattern was constrained to the area of the 2000 HyMap
footprints. When the Ripley's K function is plotted over distance, the
line 1:1 represents a spatially random pattern, a function that exceeds
the line 1:1 indicates that the pattern is spatially clustered, and a
function that lies below the 1:1 line indicates a pattern that is spatially
regular.

3. Results

Whitebark pine stress and mortality are mapped for all six HyMap
images by the MTMF process (Fig. 4). The mixture-tuned matched-
filter algorithm classified the remotely sensed images for any
whitebark pine crown stress and mortality, the extent of which
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Fig. 4. The whitebark pine crown stress and mortality classification results for each of the HyMap images are here overlaid on a true-color composite of the image. Each red point
represents a pixel that was classified as containing a portion of the red/dead flagging training reflectance spectrum. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

varied between sites and years. The Daisy Pass site had the least
amount of classified stress and mortality, with a total of 256 pixels
with crown stress and mortality in 2000 and an increase to 624 pixels
in 2006, while Tom Miner had the highest number of crown stress and
mortality pixels in both years, with 842 pixels of crown stress and
mortality in 2000 and 1844 pixels in 2006. The Red Lodge site had an
intermediate level of crown stress and mortality, with 565 pixels in
2000 and 1057 pixels in 2006. Producer's accuracy ranged from 82% to
95%, and user's accuracy ranged from 94% to 97% for the images,

indicating a highly accurate classification scheme (Table 1). Accura-
cies were computed based on the 64 field plots not used in the MTMF
classification where data was first collected in 2000 and re-collected
in 2006.

From the spatial statistics executed on the point patterns of
whitebark pine crown stress and mortality, all of the classified images
demonstrated some level of clustering (Fig. 5); however, the degree of
clustering within each of the three study sites changed differently
throughout the 2000-2006 time period. At Daisy Pass, the distance at
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Table 1
The producer's and user's accuracies for whitebark pine crown stress and mortality
within each HyMap scene were quite high for a remote sensing classification.

Location Year Producer's accuracy User's accuracy
Daisy Pass 2000 95% 94%
2006 94% 96%
Red Lodge 2000 82% 95%
2006 90% 96%
Tom Miner 2000 88% 97%
2006 93% 97%

Accuracies were computed by using the 64 field plots that were not used in the MTMF
classification process where data was first collected in 2000 and re-collected in 2007.
Classification accuracy for the 2006 scenes (90-97%) was generally higher than that for
2000 (82-97%). The likely explanation for this is the greater number of training
polygons collected for the 2006 analysis (14 training pixels per image) compared with
2000 images (8-10 training pixels per image).

which there is no longer significant clustering (the intercept where K-
observed crosses K-expected on the Ripley's K plots) decreases at
Daisy Pass from greater than 1000m in 2000 to 395m in 2006.
Similarly, at Red Lodge, the clustering distance changed from 587 m in
2000 to 362m in 2006. The spatial pattern of stress and mortality at
Tom Miner behaves differently than that of Daisy Pass and Red Lodge,
and its Ripley's K function increases from a distance interval of 715m
in 2000 to a distance interval of 846 m in 2006.

The decrease in the distance of spatial aggregation at Daisy Pass
and Red Lodge indicates that an overall dynamic of small-scale
landscape fragmentation dominated these two sites between 2000
and 2006. This increase in small-scale heterogeneity mirrors the
predicted pathology of blister rust, as it spreads from Ribes popula-
tions through its airborne spores to whitebark pine, effectively filling
in small patches of infection throughout the landscape. The pattern at
Tom Miner mirrors the pathology of mountain pine beetle, as the
increase in the distance of significant clustering indicates that the
pattern is dominated by the growth of a contiguous patch of mortality.

The difference in pathogenic influence of the three images is
supported by ground-based measurements from the aggregated data
from the field validation plots within each of the representative stands
(Fig. 6). Fig. 6 represents data aggregated from all 80 field plots (10
plots per stand), where data was first collected in 2000 and re-
collected in 2006. While mountain pine beetle activity was either
absent or static between 2000 and 2006 at the Daisy Pass and Red
Lodge sites, blister rust showed large increases between the two
years. Conversely at Tom Miner, blister rust levels remained rather
static from 2000 and 2006 and mountain pine beetle showed a large
increase. We used a two-tailed t-test to determine significant
increases in pathogen activity for each of the 8 sites, and found that
there was a significant increase in blister rust (p-value<0.001) for all
Daisy Pass sites and Red Lodge sites 1 and 2. There was a significant
increase in mountain pine beetle (p-value<0.001) between years for
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Fig. 5. The Ripley's K equations are computed for each of the classified stress and mortality point patterns in 2000 and 2006. The distance of significant spatial clustering (where the
observed Ripley's K function exceeds the prediction of complete spatial randomness) decreased from 2000 to 2006 at Daisy Pass and Red Lodge, whereas the distance of significant
clustering at Tom Miner increased, indicating possible differences in the cause of whitebark pine crown stress and mortality.
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Fig. 6. This analysis contains data from 80 5.2-meter radius field inventory plots, first surveyed in 2000 and again in 2007, and supports the results from the Ripley's K analysis. While
mountain pine beetle was absent or static at Daisy Pass and Red Lodge, blister rust increased dramatically, whereas blister rust remained static at Tom Miner and mountain pine beetle
instead showed a large increase between the two years. There was a statistically significant increase between years in blister rust (p-value<0.001 in an unpaired two-tailed t-test) for all
Daisy Pass sites as well as the Red Lodge 1 and 2 sites. There was a statistically significant increase between years in mountain pine beetle (p-value<0.001) for both Tom Miner sites. All

other relationships between years were insignificant.

both Tom Miner sites. p-Values for all sites are included as Table 2. The
field data thus directly support the inference obtained from the
analysis of spatial patterns; namely that mountain pine beetle

Table 2
We used the two-tailed t-test to determine whether the changes in the amount of

blister rust and/or mountain pine beetle were significant for all sites presented in Fig. 6.

Site Agent p-Value
Daisy Pass 1 Blister rust <0.001
Mountain pine beetle 0.637
Daisy Pass 2 Blister rust <0.0001
Mountain pine beetle N/A
Daisy Pass 3 Blister rust <0.0001
Mountain pine beetle N/A
Red Lodge 1 Blister rust <0.0001
Mountain pine beetle N/A
Red Lodge 2 Blister rust <0.001
Mountain pine beetle N/A
Red Lodge 3 Blister rust 0.0675
Mountain pine beetle 0.3787
Tom Miner 1 Blister rust 0.7829
Mountain pine beetle <0.001
Tom Miner 2 Blister rust 0.8775
Mountain pine beetle < 0.0001

infection dominates the changing spatial pattern of infection at Tom
Miner, while blister rust is responsible for the pattern of infection at
Daisy Pass and Red Lodge.

4. Discussion

Using the Ripley's K function to analyze the patterns of stress and
mortality created by the highly accurate MTMF classification
highlighted the fundamental differences in the cause of spatial
fragmentation between 2000 and 2006 at the three sites. The
differences in the patterns of stress and mortality parallel the
differences in the underlying pathogen dynamics that govern the
Tom Miner site in comparison with the Daisy Pass and Red Lodge sites.
While blister rust and mountain pine beetle co-occur in the landscape,
the dominance of either blister rust or mountain pine beetle dynamics
can be deduced through changes within the scale of spatial
aggregation over time as determined by the Ripley's K equation.

We used the Ripley's K equation to calculate the distance of
significant clustering between stress and mortality points. By looking
at changes in the distance of significant clustering between 2000 and
2006, we demonstrated an increasing distance of significant stress
and mortality clustering as calculated by Ripley's K, indicating that the
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landscape is dominated by a pattern of contiguous mortality, the
pattern dominant in mountain pine beetle attack. This spatial pattern
of contiguous mortality parallels the predicted pattern of mountain
pine beetle dynamics, as the beetles typically move to spatially
proximal trees throughout the landscape and was the dominant
spatial pattern at the Tom Miner site. Conversely, in a whitebark pine
landscape dominated by blister rust infestation, the distance of
significant stress and mortality clustering calculated by Ripley's K
decreases over time, indicating a spatial pattern of “infilling” between
infected patches. This spatial dynamic was dominant at the Daisy Pass
and Red Lodge sites between 2000 and 2006.

Itisimportant to note that landscape-level tree stress and mortality
is a complex process and alternate explanations could exist for the
observed differences in spatial patterns of whitebark pine fragmen-
tation. The most convincing alternative hypothesis for the growth of a
single, contiguous patch of stress and mortality is that the distribution
is the result of habitat preference for blister rust, rather than the
dominance of mountain pine beetle mortality. Spatial preference for
the selection of blister rust infestation patterns in whitebark pine
habitat could dominate the overall red/dead distribution pattern if the
single, contiguous patch of stress and mortality within the Tom Miner
scene is an area of whitebark pine habitat predisposed towards blister
rust infection.

In our analysis we attempted to correlate presence/absence as well
as level of blister rust and mountain pine beetle infestation within
potential micro-climate factors including slope, elevation and aspect
derived from the National Elevation Dataset (USGS, 1999). We found
no significant relationships between presence/absence or level of
infection with micro-climate variables within the 2000 and 2007 field
datasets, within the 2000 and 2006 classified imagery, or between a
2000 and 2006 differenced change map. Further details of this
environmental analysis are beyond the scope of this paper and will be
presented in Hatala et al., submitted for publication.

While our analysis is limited to two time points and a limited
spatial extent, using the Ripley's K function over time provided a
fundamental first-look at the differences within the underlying spatial
processes that govern the distribution of stress and mortality within
these three whitebark pine sites. The method presented in this
analysis can be generalized to other host-pathogen forest systems,
where differences in pathogen spatial dynamics translate into
different landscape fragmentation patterns. By using the Ripley's K
equation to calculate the distance of significant clustering and how it
changes over time, land managers can gain insight into the dominant
causes of mortality in large continuous spatial areas throughout many
landscapes. For example, a similar approach could be used to analyze a
disturbed landscape that contained both the contiguous pattern of fire
and the spatially heterogeneous pattern of water stress. The ability to
separate and predict the causes of mortality and patterns of frag-
mentation is a key to predicting the effects of disturbances to the
ecosystem, and this method of comparing the Ripley's K value over
time has widespread application to landscape ecology.

5. Conclusion

Understanding increases in landscape fragmentation from the
combined dynamics of blister rust and mountain pine beetle will be
the key to understanding forest community dynamics at treeline
within whitebark pine habitat and has wide application for predicting
an interdisciplinary suite of changes in the high-altitude landscape of
the GYE. Interpreting the extent and spatial dynamic of both blister
rust and mountain pine beetle as was determined in this analysis is an
essential first step towards understanding changes within high-
altitude whitebark pine habitat as a result of these disturbances. Since
whitebark pine has important connections to other organisms and
ecological processes within the GYE, the increase in stress and
mortality of whitebark pine within all three sites is expected to have a

cascade of effects to other trophic levels. Categorizing and quantifying
the dynamics of blister rust and mountain pine beetle in the
landscape, will assist the selection of strategic whitebark pine stands
to prioritize the replanting or conservation of blister rust-resistant
whitebark pine (Schoettle & Sniezko, 2007), currently considered the
most effective management strategy for dealing with blister rust.

Interest in large-scale dynamics of forest pathogen stress and
mortality is increasing with concerns regarding the effects of global
climate change on terrestrial ecosystems. Global climate change is
expected to impact both the size and frequency of ecosystem
disturbances such as forest pathogen and pest outbreaks. This further
complicates the already arduous task of monitoring huge areas of land
for forest managers. The methods and results of this analysis
demonstrate that examining changes in the Ripley's K equation over
time from a remote sensing classification scheme provided an accurate
primary analysis of different agents of stress and mortality operating
concurrently in the landscape. The methodology presented in this paper,
which combined small-scale field surveys with remote sensing,
provides land managers and landscape ecologists with a tool for
analyzing the spatial effects of multiple agents of forest stress and
mortality and can serve as an informed first-look that can be used to
focus more intensive field campaigns.
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