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Linking models and data on vegetation structure
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[1] For more than a century, scientists have recognized the importance of vegetation
structure in understanding forest dynamics. Now future satellite missions such as
Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to
provide unprecedented global data on vegetation structure needed to reduce uncertainties
in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation
structure in ecosystem models, develop and analyze theoretical models to quantify
model‐data requirements, and describe recent progress using a mechanistic modeling
approach utilizing a formal scaling method and data on vegetation structure to improve
model predictions. Generally, both limited sampling and coarse resolution averaging lead
to model initialization error, which in turn is propagated in subsequent model prediction
uncertainty and error. In cases with representative sampling, sufficient resolution, and linear
dynamics, errors in initialization tend to compensate at larger spatial scales. However, with
inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics,
errors in initialization lead to prediction error. A robust model‐data framework will require
both models and data on vegetation structure sufficient to resolve important
environmental gradients and tree‐level heterogeneity in forest structure globally.

Citation: Hurtt, G. C., J. Fisk, R. Q. Thomas, R. Dubayah, P. R. Moorcroft, and H. H. Shugart (2010), Linking models and data
on vegetation structure, J. Geophys. Res., 115, G00E10, doi:10.1029/2009JG000937.

1. Introduction

[2] From the original development of “Nachhaltigkeit,” or
in English “sustainability,” with the Germans in the mid-
eighteenth century, forest structure has been recognized as an
essential component of understanding forest dynamics. Sci-
entific forestry has as its basis the application of “yield tables”
compiled from empirical measurement of, in some cases,
centuries of observations on the complex relationships among
tree volumes, tree numbers, tree sizes, tree growth rates, and
stand basal area for forest stands arranged by their canopy
height at a particular age [Shugart, 2008]. The historically
early recognition of structure as a significant control on the
dynamic responses of stand volume or biomass has continued
in a number of the quantitative approaches used in forest
models [also see Porté and Bartelink, 2002]. Early models of
individual based forest dynamics [Newnham, 1964;Mitchell,
1969, 1975; Hegyi, 1974] soon found application for mixed

species forests [Ek and Monserud, 1974; Ranney et al., 1981]
and evolved into so‐called “gap” models with many world-
wide applications [Shugart, 1984, 1998]. Today, gap models
are increasingly emphasizing the spatial interactions in for-
ests [Busing and Mailly, 2004] and are moving back in the
direction of their roots in the earlier spatially explicit forestry
models. In Japan, the mechanisms underlying the functioning
of yield tables were explored using partial differential equa-
tion models of the dynamics of the number and sizes of forest
trees and stand thinning [Yoda et al., 1963; Shinozaki et al.,
1964]. These models were initially developed for even‐aged,
monospecies plantations [Suzuki and Umemura, 1967, 1974]
but were soon pushed into applications in species‐rich,
mixed‐aged rain forest [Kohyama, 1993]. An approach much
like that of Kohyama was developed by Russian ecologists
[Korzukhin and Antonovski, 1992] using size‐structured in-
tegro‐differential equations. Thus, detailed models including
vegetation structure have existed for decades. But due to the
high level of detail and resolution required to capture relevant
heterogeneity, these models have largely been confined to
relatively small spatial/temporal scales (e.g., forest gap
models operating at scales of 1 km or less). As a consequence,
nearly all large‐scale global carbon models have by necessity
been highly aggregated, omitting much of this detail, and
been silent on emerging key questions such as the role of
disturbance/recovery in the global carbon balance [Hurtt
et al., 1998].
[3] From the ground, structural properties of vegetation

such as DBH, height, etc. are routinely measured in localized
field plots using field methods. For some regions these
measurements have been coordinated into regional or

1Institute for the Study of Earth, Oceans, and Space, University of New
Hampshire, Durham, New Hampshire, USA.

2Department of Natural Resources and the Environment, University of
New Hampshire, Durham, New Hampshire, USA.

3Department of Ecology and Evolutionary Biology, Cornell University,
Ithaca, New York, USA.

4Department of Geography, University of Maryland, College Park,
Maryland, USA.

5Department of Organismic and Evolutionary Biology, Harvard
University, Cambridge, Massachusetts, USA.

6Department of Environmental Sciences, University of Virginia,
Charlottesville, Virginia, USA.

Copyright 2010 by the American Geophysical Union.
0148‐0227/10/2009JG000937

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, G00E10, doi:10.1029/2009JG000937, 2010

G00E10 1 of 11

http://dx.doi.org/10.1029/2009JG000937


national inventories of large numbers of sample plots (e.g.,
USFIA), but to date and for the foreseeable future there is no
consistent global coverage available based on ground mea-
surements. In addition, estimates for large areas with limited
ground‐based sampling are potentially uncertain or biased
[Fisher et al., 2008]. Optical remote sensing has literally
revolutionized the characterization of key properties of the
land surface resulting in the mapping of forest/nonforest areas
and important vegetation indices at high spatial and temporal
resolution. However, vegetation structure is difficult or
impossible to get at with optical remote sensing alone. In
many respects we know more now about the extent of our
forests, than their content.
[4] In 2007, the preface to the NRC Decadal Survey stated

the importance of a foundation of integrated observations on
which to build forecast models and other tools for making
informed decisions [Anthes et al., 2007]. It also gives high
priority to a new satellite mission, Deformation, Ecosystem
Structure, and Dynamics of Ice (DESDynI), intended in part
to provide unprecedented global data on vegetation structure
that can be used to improve estimates of terrestrial carbon
stocks, fluxes, and the mechanisms controlling them. Purves
and Pacala [2008] recently suggested that the explosion of
ground‐based inventory data on individual trees may preface
the beginning of a new generation of models. Here we pro-
vide a brief review of recent uses of data on vegetation
structure in forest models, present new theoretical studies
designed to investigate and quantify general model‐data
requirements for vegetation structure, and describe recent
results using data on vegetation structure in a mechanistic
model with an integrated scaling strategy to improve pre-
dictions. Taken together, this work provides a background,
theoretical, and mechanistic basis for a robust framework
linking data on vegetation structure to models to improve
predictions of terrestrial carbon dynamics.

2. Recent Studies Linking Models and Remote‐
Sensing Data on Vegetation Structure

[5] Remote‐sensing data can be used as inputs to ecosys-
temsmodels, to test model predictions, and to update or adjust
models [Plummer, 2000]. The role of remote sensing in
providing inputs to models can be further divided into ini-
tialization and parameterization. Whether a particular quan-
tity is a variable or a constant is model specific. For example,
a model simulating instantaneous carbon exchange with the
atmosphere may treat aboveground biomass as a constant,
while biomass is a key dynamic variable in a forest succession
model that predicts changes over decades to centuries. Here,
we present examples of studies that use lidar and/or radar
remote sensing of forest structure as inputs to, validation of,
and for updating ecosystem models. Models can also be used
to interpret remote sensing data [Plummer, 2000], although
this is not addressed here. For more general reviews of remote
sensing and model synthesis, see Turner et al. [2004],
Nightingale et al. [2004], Plummer [2000], and Lucas and
Curran [1999].
[6] Initialization establishes the starting point of model

simulations, which corresponds to the starting point of
modeled canopy height and/or biomass when lidar or radar
data are used for initialization. Defining the starting point for
simulations is critical because future projections of forest

dynamics are highly dependent on initial state. Small trees
have different future dynamics than large ones. At the patch
scale, during regrowth the biomass and canopy height tend to
increase through time, while the net flux of carbon into the
system likely slows. From natural disturbances, to land use
history [Hurtt et al., 2006], the entire landscape is a mosaic of
patches in some stage of recovery. While land use history
reconstructions can provide some of the information that is
needed [Hurtt et al., 2006], comprehensive spatially explicit
data are not available globally at sufficient resolution.
Remote sensing of vegetation structure can provide relevant
data.
[7] Ranson et al. [2001] used airborne radar measurements

to initialize the biomass in a forest gap model, Zelig [Urban,
1990], at a northern forest in Maine. They found that radar
data on biomass and species composition along with soil data
at the 30 × 30 m resolution allow initialization that generated
biomass in the model that compared well to field data and
generated expected successional trajectories.
[8] Data on vegetation structure have also been used in

model testing. Le Toan et al. [2004] used radar measurements
of forest structure to access where the Sheffield Dynamic
Global Vegetation Model [Woodward et al., 1995] was un-
derpredicting or overpredicting biomass across a landscape in
Siberia. Their study focused on two scales: 0.5° × 0.5° and a
“local” scale that corresponded to individual stands. At both
scales they initialized using the best known land use history at
0.5° × 0.5° resolution [Goldewijk, 2001] used in the coarser
scale study, and data on stand establishment at the local scale
study. Radar data aided in identifying where the model
predicted erroneous biomass values. At coarse resolution,
erroneous predictions were either errors in predicting envi-
ronmental influences on growth or areas where the land use or
disturbance history was not included in the coarse resolution
land history. At finer resolution, the land use history was well
constrained and differences between the predictions and the
radar data were due to inadequate representation of fine‐scale
variation in environmental conditions.
[9] Vegetation structure data have also been used to

parameterize models. For example, Kotchenova et al. [2004]
used lidar data on vertical height profiles from the SLICER
sensor to parameterize a canopy photosynthesis model.While
canopy height profiles are a dynamic variable in models of
succession that simulate canopy change at multiyear time-
scales, the photosynthesis model used static canopy height
profiles to simulate the GPP at the daily timescale where
successional changes are less important. The authors com-
pared the simulatedGPP between amodel parameterized with
a uniform vertical canopy distribution and a model parame-
terized using the lidar measured vertical distribution. The
latter corresponded to the observed distribution of sun and
shade leaves and improved GPP simulations by over 50%.
Patenaude et al. [2008] used three sources of remote sensing:
radar data on biomass, lidar data on tree height, and hyper-
spectral data on LAI, to aid in parameterizing nondynamic
variables in the 3‐PG (Physiological Processes Predicting
Growth [Landsberg and Waring, 1997; Sands and Landsberg,
2002]) model at a forestry plantation in England. They used a
Basyian approach to estimate the likelihood and distribution
of parameters in the model given the tree height, biomass, and
LAI data that were collected. While Patenaude et al. [2008]
used the Basyian framework for model calibration before
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prognostic simulations, the study gives an example how
remote sensing data on forest structure can be used to update
parameters in ecosystem models after comparison between
predicted values of forest structure and remotely sensed
measurements.

3. Theoretical Studies to Quantify Resolution
Requirements

[10] For accurate predictions, models generally require
estimates of the land surface to be used for initial conditions.
Errors in estimation and/or limited sampling of the state of the
land surface will create errors in model initialization, which in
turn can propagate as errors in model predictions.
[11] We developed a simple theoretical model to investi-

gate generalized data requirements of vegetation structure for
forest models. The modeling framework is a simple descen-
dent of the gap model paradigm and consists of extensions
to the model of Fisher et al. [2008], developed originally to
assess issues of field‐plot sampling requirements for large‐
scale estimates of forest carbon stocks and fluxes. Following
Fisher et al. [2008], we imagine a forested landscape on a
large grid on a horizontal plane where each grid cell is the
approximate size of an adult canopy tree (e.g., 10 × 10 m).
Each cell accumulates biomass b at constant rate g, and dies
(is disturbed) with probability m. Disturbance events are
distributed across the landscape following a power law size‐
frequency relationship

nz ¼ Az�� ð1Þ

where n is the number of gaps of size z, and A is a constant
[Pascual and Guichard, 2005]. The scaling exponent a
describes the clustering of disturbance events. Small values of
a indicate a relatively flat power law distribution in which
large clustered disturbance events are relatively common,
whereas large values of a indicate a relatively steep distri-
bution dominated by smaller events. Over sufficiently large
spatial scales, or timescales, the expectation of the above
stochastic process is simply

dBðtÞ=dt ¼ G� �BðtÞ; ð2Þ

where B(t) is the domain mean biomass, and G is the domain
mean growth rate (G = g, in this simple homogeneous case).
This model has the time‐dependent solution B(t) = G/m
(1−e−mt) and the dynamic equilibrium B* = G/m.
[12] For the analyses described below, we ran the above

model on a 1000 × 1000 grid cell domain for a 250 year
spin‐up period to achieve dynamic equilibrium, and then
for an additional 1000 years for use in analyses. Following
Fisher et al. [2008], for each time step (year) we use a
pseudorandom process to choose the number of gaps in each
size class from the power law distribution, and then place
these gaps on randomly drawn center points chosen to prevent
overlap. Biomass in gaps is set to zero, and biomass in all
grid cells is increased by g. Figure 1 illustrates the evolution
of the simulated landscape through the spin‐up period in a
range of disturbance regimes from highly clustered (a = 1.5)
to well distributed (a = 2.5). We also adapted the model to
address issues of environmental gradients, and nonlinear
forest growth rates, explained in greater detail below. Using
the model as the reference, we then calculated the effects of

limited sampling and coarse resolution averaging estimates
of the state of the system. Next, we quantified how resulting
errors propagated in model estimates of biomass and bio-
mass flux.

3.1. Incomplete Observations of the State
of the Land Surface

[13] The starting point in our analyses was to quantify the
effects of limited sampling and coarse resolution averaging
on estimates of the state of the land surface. To do this, we
first produced a set of reference cases using the above model.
To produce the set, values for g and m were chosen to be on
the order of values reported in the literature on forests (g = 1,
m = 0.02), and the parameter a was varied from 1.1 to 3.0 in
increments of 0.1 to represent a range of spatial scales of
heterogeneity caused by disturbance events. For each refer-
ence case, we then produced two sets of corresponding sce-
narios. In the first set, we simulated the effects of resolution
by averaging the state of the reference case at a range of
resolutions from tree level (i.e., grid‐cell level, no averaging)
to 1000 × 1000 cell (i.e., domain average). In the second set,
we simulated the effects of sampling by sampling the refer-
ence case at a range of intensities from 100% (i.e., complete
coverage) to 0.01% (i.e., 1 in 1000 cells) and filling in gaps
using bilinear interpolation between samples. For both sets,
we then computed the tree level (grid‐cell level) average
absolute error between each reference case‐scenario pair
averaged over all time steps.
[14] Figure 2a illustrates the average tree level (grid‐cell

level) error in the state of the land surface that results from
coarse measurements (averaging) as a function of a. As
expected, accurate wall‐to‐wall measurements of the domain
at the resolution of individual trees introduced no errors.
However, measurements at coarser resolution averaged over
tree level variability and translated into errors in the estimated
state of the land surface. The errors increased with degree of
averaging over a range of plausible as, and were relatively
less for landscapes with extremely high degrees of spatial
clumping (extremely low as). For all except the smallest as,
errors increased from 0 with tree level measurements to over
30, or greater than 60% of B*, at resolutions of 1 ha or
coarser. Cases with as less than 1.5 had lower tree level error
for a given resolution due to the relatively clumped spatial
structure resulting from relatively clumped disturbances.
Figure 2b illustrates analogous results for limited sampling.
Both coarse resolution averaging and limited sampling trans-
lated into errors in the estimated state of the land surface at
the tree scale.

3.2. Model Propagation of Errors: Homogeneous
Land Surface

[15] Errors in the state of the land surface have the potential
to propagate in model estimates of carbon stocks and fluxes
at various scales. At the same time, in larger spatial scale
averages, tree‐level errors are expected to compensate to
some degree. To investigate these phenomena, we quantified
the effects of coarse resolution averaging on model estimates
of biomass stocks and fluxes across a range of modeling
scales. Here, modeling scale refers to the spatial scale of in-
terest and is the scale at which comparisons with reference
cases are made. It is also the spatial resolution at which the
location of individual canopy trees (cells) are known.
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[16] Specifically, we extended the methods described
above and calculated the average absolute error in biomass
and biomass flux between each reference case, and corre-
sponding model scenarios of the same system, across a range

of both measurement and modeling resolutions. Model sce-
narios of biomass were calculated at each modeling scale as
the average biomass of member cells. Model scenarios of
biomass flux were calculated at each modeling resolution

Figure 2. Tree‐level average absolute errors in the state of the land surface introduced through (a) averaging
and (b) limited sampling for systems with as from 1.1 (clustered disturbance) to 3.0 (distributed disturbance).

Figure 1. Time series snapshots of simulated forest biomass (150 × 150 cell detail) and a map of simulated
forest biomass at spin‐up years 50, 150, and 250. Different disturbance regimes from highly clustered
(a = 1.5) to well distributed (a = 2.5) are shown.
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as the difference between modeled gains due to growth and
losses due to disturbance. Gains of biomass were calculated
at eachmodeling scale as the average growth ofmember cells,
simply G = g in this case. Losses of biomass were calculated
at each modeling scale using the actual disturbance rates
from the reference case applied to the estimated biomass
of member cells, to isolate potential errors introduced from
initialization.
[17] Figure 3 illustrates the errors that resulted from poor

mismatches between model resolution and data resolution
in estimates of biomass stocks and fluxes for the reference
case a = 2.5 (chosen to be representative of a wide range of
as 1.5‐3, see above). In Figure 3a, average absolute error in
biomass at the modeling resolution is shown as a percent of
equilibrium biomass, B*. Above the 1:1 line in Figure 3, data
resolution is finer (higher) than model resolution, and thus
errors at the modeling scale were minimal or nonexistent.
Errors may exist at finer spatial scales, but these compensated
at the coarser modeling scale. However, in cases where the
data resolution was much coarser (lower) than the modeling
resolution (below the 1:1 line), errors increased due to rela-
tively large‐scale averages of biomass incorrectly being
applied at smaller scales. Modeling at tree‐scale resolution
with coarse resolution data created errors as large or larger
than B* at that scale. However, at modeling resolutions of
100 ha or coarser, the errors reduced to near zero regardless
of the measurement resolution as these patches are large
enough to always be near equilibrium in this system.
[18] Figure 3b illustrates corresponding results for model

estimates of biomass flux. In Figure 3b the average absolute
error in predicted biomass flux at the model resolution is
shown as a percent of annual growth rate, g. The pattern of
errors for biomass flux was qualitatively analogous to that for
biomass stocks (Figure 3a). Modeling at tree‐scale resolution
with coarse resolution data created errors in flux greater than
100% of the annual growth rate, falling off to near zero at
100 ha or coarser modeling resolutions. However, unlike

biomass, errors in biomass flux also existed at relatively fine
(high) model resolutions even without errors in biomass stock
at that scale, when disturbances generally do not take average
stock at that scale.

3.3. Model Propagation of Errors: Nonlinear
Growth Rates

[19] The above analyses were based on the simplest pos-
sible forest gap‐type model. To make the model more real-
istic, we investigated the effects of local nonlinear growth
rates as forest gaps fill and trees age. Specifically, we replaced
the assumption of constant g, with a local nonlinear growth
rate (gi,) in which the growth rate is a nonlinear function
of the biomass in the grid cell (bi).

giðtÞ ¼ �ðbiðtÞ þ K1ÞðbiðtÞ � K2Þ=K3 ð3Þ

This equation has slow initial growth, fast midlife growth,
and a slow approach to maximum biomass. For the following
simulations, we set K1 = 2, K2 = 100, K3 = 1000 to create a
system with a dynamic equilibrium (B*) approximately equal
to that of the linear formulation described above. Using this
new parameterization of the model, we then repeated the
analyses for model propagation of errors described above.
[20] Figure 4 illustrates the results. Biomass error was

unaffected by the nonlinearity because model estimates of
biomass were based on direct observations of structure.
However, errors in predicted flux increased dramatically
across all simulations that relied on averaging above the tree
scale. The increased error in model prediction of flux resulted
from the misrepresentation of tree‐level heterogeneity by
averages, and the fact that the growth function of the average
is not equal to the average of the growth function. In these
simulations, the lack of information on tree‐level heteroge-
neity is debilitating to model predictions of dynamics.
[21] Could the loss of tree‐level information from course

measurements be mitigated with a fusion of averaging and

Figure 3. Average absolute error in biomass stocks and predicted fluxes for constant g in a uniform
environment across all combinations of model and measurement resolution. (a) Absolute error in biomass
stocks as a percent of equilibrium biomass, B*. (b) Absolute error in predicted flux as a percent of annual
growth rate, g. R refers to resolution which gets smaller as scale gets larger. In both cases, error increases as
model resolution exceeds measurement resolution.
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high‐resolution sampling technologies? To investigate this,
we recomputed flux errors assuming both average biomass
and the subgrid‐scale distribution of biomass were known at
the modeling scale. As Figure 4c illustrates, knowing both the
average biomass and distribution of tree level biomass values
largely eliminated the errors in growth described above. As
with the linear case, coarse measurements lead to large errors
at the tree scale, but as model resolution approaches 100 ha,
errors drop to near zero.

3.4. Model Propagation of Errors: Nonlinear Growth
Rates and Environmental Gradients

[22] To make the model still more realistic, we next con-
sidered the case in which forest growth rates are locally
nonlinear, and the environment is nonhomogeneous and has
an environmental gradient that strongly affects growth rates.

For example, consider a mountainside on which potential
tree growth rates are high in the valley and low toward the
summit. How does the combination of nonlinear tree‐level
growth rates and a strong environmental gradient affect
model‐data requirements? To investigate this, we adapted the
above model to be scaled by an environmental factor affect-
ing plant growth rates

giðtÞ ¼ �ðbiðtÞ þ K1eiÞðbiðtÞ � K2eiÞ=K3ei: ð4Þ

For simplicity, the local environment, ei, and thus the initial
growth rate, maximum growth rate, and maximum biomass,
varied linearly from 0.2 at one edge of the domain to 2.0 at
the other in 10 tree (1 ha) stripes. The overall domain aver-
age maximum growth rate and equilibrium biomass were all
approximately equal to the above cases. Using this new
parameterization of the model, we then repeated the analyses

Figure 4. Average absolute error in biomass stocks and predicted fluxes for nonlinear G in a uniform
environment across all combinations of model and measurement resolution. (a) Average absolute error in
biomass stocks as a percent of equilibrium biomass, B*. (b) Average absolute error in predicted flux as a
percent of domain mean growth rate using mean measured tree biomass per model grid cell. Error increases
rapidly as model resolution becomes coarser due to the difference between the growth rate of an average
tree, and the average growth rate of all trees. (c) Average absolute error in predicted flux as a percent of
domain mean growth rate using a distribution of trees in each model grid cell. Knowledge of the distribution
of trees reduces errors to similar to constant growth case.
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described above simulating the fusion of technologies
described there in which both the average biomass and dis-
tribution of biomass values were assumed to be accurately
known for each modeling unit.
[23] Figure 5 illustrates the results. Model biomass error

was analogous to previous results, but greater in cases where
measurements were substantially coarser than the scale of
the environmental gradient. In these cases, relatively coarse
biomass averages were inaccurate at the resolution over
which biomass varied due to the underlying environmental
gradient. This lead to some cells being initialized outside of
the range of possibility, and propagated as large biomass flux
errors due to mortality.
[24] Figure 5b illustrates that a potentially optimal/efficient

scale exists for model‐data combinations at which both the
model and measurements are sufficient. If measurement
resolution is too coarse, errors in initial biomass and resulting
flux are large. If model resolutions are too coarse, the effect of
the environmental gradient on growth rates is missed. Errors
were minimized when both the modeling resolution and
measurement resolution approached the scale of the under-
lying environmental heterogeneity, in this case at ≤ 1 ha.

4. Recent Results From a Mechanistic Model

[25] Both the importance of forest structure to forest
dynamics, and the theoretical studies on scale/resolution
described above, provide a sound basis for including fine‐
scale data on vegetation structure in mechanistic models of
forests. While the above theoretical studies are based on the
simplest forms of forest gap models, over the last decade an
advanced mechanistic model of forest ecosystem dynamics
has been developed in which individual‐based forest
dynamics can be efficiently modeled over large scales (Eco-
systemDemography (ED)model [Hurtt et al., 1998;Moorcroft

et al., 2001]). Studies using this model have illustrated the
importance of and potential for incorporating data on vege-
tation structure to improving mechanistic model predictions,
and are described below in the context of linking models and
data on vegetation structure.
[26] The ED model is an individual‐based model of vege-

tation dynamics with integrated submodels of plant growth,
mortality, phenology, biodiversity, disturbance, hydrology,
and soil biogeochemistry [Moorcroft et al., 2001]. Individual
plants of different functional types compete mechanistically
in ED under local environmental conditions for light, water,
and nutrients. ED differs from most other terrestrial models
by formally scaling up physiological processes through
individual‐based vegetation dynamics to ecosystem scales,
while simultaneously modeling natural disturbances, land
use, and the dynamics of recovering lands. ED has recently
been implemented in South and Central America [Moorcroft
et al., 2001], the U.S. [Hurtt et al., 2002; Albani et al., 2006;
Medvigy et al., 2009], and is now a global model. Of partic-
ular relevance to this study is the fact that all plants in ED
have an explicit height, a property that allows for a direct
connection to data on vegetation structure.
[27] Recent studies using ED have used lidar remote

sensing data of vegetation structure to initialize and test
predictions of carbon stocks and fluxes at a range of experi-
mental study sites in North and South America with aircraft
data. Hurtt et al. [2004] used lidar measurements of canopy
height to initialize the ED model at the La Selva Biological
Station in Costa Rica. The method of initialization used a
look‐up table approach (Figure 6), in which 1 ha resolution
mean canopy height data from the LVIS sensor were used to
index precomputed ED‐based projections of how individual‐
based forest structure can be expected to change through
succession at that site. Lidar‐initialized ED estimates of
aboveground biomass were within 1.2% of regression‐based

Figure 5. Average absolute error in biomass stocks and predicted fluxes for nonlinear growth rates on an
environmental gradient. (a) Average absolute error in measured biomass stocks as a percent of equilibrium
biomass B*. Errors are larger than previous cases where measurements are coarser than the scale of the
environmental gradient. (b) Average absolute error in predicted flux as a percent of domain mean growth
rate. Coarse resolution measurements lead to large errors in predicted flux due to modeling trees in inappro-
priate environmental conditions. Coarse resolution modeling leads to large errors in predicted flux due to
inability to capture the environmental gradient. To reduce errors, both the model and measurements need
to be done at the scale of the environmental heterogeneity.
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approaches using field data, and the resulting predictions
of carbon flux were tightly constrained relative to bracket-
ing alternatives that lacked data on vegetation structure
(Figure 7).
[28] In a follow‐on study, Hurtt et al. [2007] used repeat

lidar data on canopy height at La Selva Biological Station
in Costa Rica to initialize and test ED model predictions.
Airborne lidar remote sensing was used to measure spatial
heterogeneity in the vertical structure of vegetation in 1998
and 2005. Using the approach described above, 1998 lidar
data were first used to initialize the EDmodel. Lidar data from
2005 were then used to test model predictions of canopy
height change during the interval. Lidar‐initialized ED esti-
mates of changes in maximum canopy height were com-
parable to but lower than observed over the whole domain
(0.53 ± 0.4mmodeled versus 0.85 ± 0.9m observed).Most of
themodel‐data difference was due to growth of primary forest
trees that exceeded model estimates (0.04 ± 0.31 m modeled
versus 0.44 ± 0.9 m observed). The model‐data comparison
was significantly better over secondary forest areas (1.71 ±
0.9 m modeled versus 1.84 ± 0.18 m observed). Model pre-
dictions of change were also close to observations of change
at finer spatial scales, with a model‐data RMSE of < 0.5 m at
scales > 20 ha, and < 0.25 m at scales > 50 m.
[29] In some systems, patterns or gradients in environ-

mental conditions are known to exert strong influences on
patterns of vegetation structure. Building on the study of
Hurtt et al. [2004], Thomas et al. [2008] used lidar canopy
height data to initialize the ED model at the mountainous
Hubbard Brook Experimental Forest (HBEF) in NH. At

HBEF, spatial patterns in forest structure, including lidar
measurements of canopy height are strongly dependent on
the environmental and disturbance that varied over the 700 m
elevation gradient. In the study, lidar canopy height initial-
ized aboveground biomass to within 6% of the field value
and yielded carbon flux predictions that compared well to
ground‐based carbon inventory measurements. In a sensitivity
analysis, the study demonstrated that accurate predictions of

Figure 6. Regression‐ and ED‐based approaches for estimating stocks and fluxes. In the regression‐based
approach, field data and lidar data are used to produce a regression model for estimating biomass across the
domain. In the ED‐based approach, lidar data are used to initialize the ED model using a look‐up table
approach. Resulting lidar‐initialized estimates of biomass are validated using the regression‐based
approach, and the ED model is then used to predict carbon fluxes. From Hurtt et al. [2004].

Figure 7. ED model estimates of domain mean above-
ground carbon stocks (bars) and fluxes (dashed line). “ED”
indicates the lidar‐initialized model estimates. Bars indicate
uncertainty. For comparison, B1 and B2 are bracketing
scenarios from ED that result from the absence of data on
vegetation structure. From Hurtt et al. [2004].
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carbon fluxes were highly sensitive to both model resolu-
tion and the resolution of lidar inputs, in order to appro-
priately account for elevation‐dependent influences on forest
dynamics.
[30] Most recently, Medvigy et al. [2009] illustrated how

fine‐scale measurements of forest structure can be combined
with eddy‐flux measurements to improve the predictive
abilities of terrestrial biosphere models. The ED2 terrestrial
biosphere model was initialized with the observed ecosystem
structure in the footprint of the Harvard Forest eddy‐flux
tower, and then fitted to the 1995 and 1996 hourly, monthly

and yearly CO2 and ET flux data, and to observed basal area
growth and mortality in these years (pink box in Figure 8a).
Prior to optimization, the model significantly underestimated
the seasonal cycle of net ecosystem productivity measured by
the flux tower, and significantly overestimated measured
rates of individual tree growth and mortality. After fitting, the
model accurately captured the observed fluxes of CO2 and
H2O, canopy growth, and mortality over timescales spanning
hours to decades (Figure 8a). The performance of the opti-
mized ED2 biosphere model was then evaluated at a different
site, Howland Forest (Figure 8b). The model was initialized

Figure 8. Results from ED2 using data on vegetation structure to improve model predictions at Harvard
Forest and Howland Forest. (a) Predicted and observed patterns of Net Ecosystem Productivity (NEP) at
Harvard Forest. Units are tC ha−1 yr−1. The black line indicates the flux‐tower measurements, and the error
bars indicate the 2s error estimates for the observations. The solid red line indicates the predictions of the
ED2 biosphere model that incorporates fine scale ecosystem heterogeneity following optimization against
2 years of flux tower and forest demography observations at Harvard Forest (HET). The blue line indicates
the predictions of a modified version of the ED2 model that was similarly optimized against the observa-
tions, but used a conventional, aggregated “big‐leaf” representation of the plant canopy (AGG). The dashed
red line indicates the predictions from an initial, unoptimized version of the ED2 biosphere model (initial).
The magenta box indicates the 2 years of observations used to constrain the two optimized model formula-
tions. (b) Map showing the locations of Harvard and Howland Forest research sites. Green dots show the
locations of forest inventory measurements in the region. Patterns of annual (c) net ecosystem productivity
(NEP, tC ha−1 yr−1) and (d) tree growth rates (basal area increment (m2 ha−1 yr−1) at Howland Forest for the
period 1996–2002. Note that there was no change in model parameters between the simulations shown in
Figure 8a and those shown in Figures 8c and 8d. While the AGG model is able to capture the pattern of
NEP variability at Harvard Forest, it strongly underpredicts the observed rates of NEP and tree growth of
Howland. In contrast, the predictions of the HET model closely match both the observed pattern of NEP at
Harvard, and the observed rates of NEP and tree growth rates at Howland. For further details, see text and
Medvigy et al. [2009].
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with the observed canopy composition in the tower footprint,
but model parameters were not reoptimized. Despite the
markedly different forest composition between the Howland
and Harvard Forest sites (conifer‐dominated as opposed to
mixed hardwood), there was a substantial improvement in
model predictions of the 5 year CO2 flux record, and mea-
sured tree growth dynamics at Howland (Figures 8c and 8d).
All optimized parameter values fell within a priori acceptable
ranges. The parameters most responsible for the improved
goodness of fit were an increased maximum photosynthetic
rate of hardwoods, a marked increase in the rate of fine root
turnover, and a decrease in the carbon allocation to fine roots
in conifer species. The transferability between very different
ecosystems provides confidence that the optimization of the
model actually tests the hypotheses embodied in its formu-
lation, rather than being a trivial exercise in site‐specific
model tuning. A key conclusion of this study was that the
inclusion of forest structure and growth measurements into
the model optimization was essential for constraining plant
carbon allocation. This is particularly significant since this
aspect of ecosystem models play a critical role in determining
rates of plant growth and thus rates of aboveground biomass
accumulation, but are nearly impossible to measure directly.
The study also shows that the improvements in the model’s
ability to capture regional variation in ecosystem carbon
fluxes and biomass dynamics is contingent on having mea-
surements of fine subgrid‐scale variation in canopy structure,
and an ability to explicitly represent this heterogeneity within
the ecosystem model formulation.

5. Discussion

[31] Decades of research have established the importance
of vegetation structure to forest dynamics. Forecast models
of terrestrial ecosystem (carbon) dynamics require data on
vegetation structure for accurate initialization and testing.
The studies described here using both simple theoretical
models, and advanced mechanistic models, combined with
the primacy of forecasting for policy decisions, suggest that
the requirements of models may actually drive data require-
ments for future missions. Because vegetation dynamics are
generally local, nonlinear, and depend strongly on environ-
mental conditions, bothmodels and data must track fine‐scale
(tree‐level) heterogeneity in vegetation structure at scales
determined by underlying environmental gradients. Gener-
ally, limited sampling and/or coarse resolution create errors in
the estimated initial state of the land surface, which are then
propagated in model initialization and prediction errors.
[32] Both the theoretical and mechanistic approaches

described here suggest that within these guidelines, the quan-
titative model‐data requirements depend strongly the patterns
and scales of underlying environmental heterogeneity in
terrestrial systems. In principle, if one knew important char-
acteristics of the distribution of disturbance events (i.e., a,
see above), and the underlying environmental gradients that
affect plant growth rates (e.g., elevation, soils, etc.), then
an efficient modeling resolution and set of data requirements
for vegetation structure could be determined. However, these
fundamental characteristics vary and are not adequately
known globally. Over relatively homogeneous terrain, rela-
tively coarse model‐data resolutions that provided accurate
estimates of both average structure and information on the

subgrid‐scale distribution of structure would likely suffice.
But over complex terrain with steep environmental gradients,
such as elevation gradients, soil gradients, and the like, much
higher model‐data resolutions would be required for accurate
predictions.
[33] Both the theoretical and mechanistic studies described

here suggest that ~1 ha data on average vegetation structure,
and its subgrid‐scale (tree‐level) heterogeneity, would be
sufficient to drive accurate model predictions over complex
forested systems on steep environmental gradients. Data on
vegetation structure with these properties could potentially be
obtained by a fusion of the radar and lidar technologies
envisioned for DESDynI, and this very high spatial resolution
would be useful for localizing biomass stocks and fluxes and
interpreting forest dynamics. However, ~1 ha spatial resolu-
tion may prove impractical and/or unachievable globally.
Functionally, the driver of this scale is heterogeneity, and the
general need to accurately measure and model forest structure
at the scales that determine dynamics in order to minimize
prediction errors. In addition to new global studies on relevant
environmental heterogeneity, new modeling schemes that
include consistent subgrid‐scale parameterizations of envi-
ronmental heterogeneity should be investigated as a means of
potentially easing this resolution requirement.
[34] Current data from comprehensive ground‐based forest

inventories are impressive in some regions (e.g., U.S. Forest
Inventory), but nonstandard internationally and nearly absent
from some vast, remote, and important regions such as the
Amazon. Data from the current ICESAT mission are proving
invaluable for their consistency and global coverage of
vegetation structure, but sampling is limited. Over important
regions such as the domain of hurricane Katrina, > 25% of
0.25° × 0.25° grid cells are entirely unsampled (K. Dolan,
personal communication, 2010). DESDynI as currently con-
ceived will provide a qualitative leap over present data
availability on vegetation structure globally. In preparation,
newmodeling studies are also needed to quantify and develop
strategies to anticipate and minimize errors that may result
where limited sampling and/or coarse resolution averaging
remain important, assess the importance of potential data/
sensor errors, and build off the studies described here to
develop and implement a robust global model‐data frame-
work for assimilating future data in mechanistic forecast
models of terrestrial carbon dynamics.
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