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ABSTRACT

A new algorithm is formulated for retrieving hourly time series of surface hydrometeorological variables

including net radiation, sensible heat flux, and near-surface air temperature aided by hourly visible images

from the Geostationary Operational Environmental Satellite (GOES) and in situ observations of mean daily

air temperature. The algorithm is based on two unconventional, recently developed methods: the maximum

entropy production model of surface heat fluxes and the half-order derivative–integral model that has been

tested previously. The close agreement between the retrieved hourly variables using remotely sensed input

and the corresponding field observations indicates that this algorithm is an effective tool in remote sensing of

the earth system.

1. Introduction

Impacts of climate change on the natural environment

and human society are evident over the past century

(Boisvenue and Running 2006; Oppenheimer 2013).

Adaptation strategies and impact assessments require

high-resolution hydrometeorological data to capture the

variability of hydrometeorological processes at local

scales (Stamm et al. 1994;Wood et al. 2004; Georgakakos

et al. 1998, 2012; van Rheenen et al. 2004; Tanaka et al.

2006; Maurer et al. 2007). The available data products do

not always have desired space and time resolutions and

hence need to be downscaled to meet the demands of

applications. Two approaches to obtain fine-resolution

data products from the corresponding coarse-resolution

ones are dynamical and statistical downscaling (Fowler

et al. 2007;Wilby andWigley 1997; Xu 1999). Dynamical

downscaling often uses regional climate models (RCMs)

to simulate high-resolution variables. The performance

of RCMs depends on the validity of the boundary con-

dition prepared from the general circulation models

(GCMs;Miller et al. 1999; Xue et al. 2007), which usually

have biases (Liang et al. 2008). The computational

cost of dynamical downscaling makes it ‘‘essentially im-

possible’’ to produce long-term records (Maurer and

Hidalgo 2008). As a result, statistical downscaling meth-

ods are often used to generate high-resolution variables.

The statistical downscaling is based on the derived re-

lationship or transfer function between modeled outputs

and the corresponding observations during the same

period of time, assuming that the transfer function de-

rived from historical data remains unchanged for future

time (Mearns et al. 1999; Murphy 1999). Yet, this sta-

tionarity assumption for the transfer function may not

always hold. Mathematically, a transfer function relates

predictands to predictors. For example, predictors can be

large-scale atmospheric variables and predictands can be

the corresponding local surface variables, the parameters

of the distributions of local variables, and the frequencies

of the extreme local variables (Pfizenmayer and von
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Storch 2001; Katz et al. 2002). The constructed analog

(CA) is one of the approaches that use relationships

between modeled and observed variables (Hidalgo et al.

2008; Maurer et al. 2010). Maurer et al. (2010) combined

the bias correctionwith theCA (BCCA) to produce bias-

corrected and downscaled data. A new bias correction

and spatial downscaling (BCSD) method was proposed

by Wood et al. (2004). This method uses a quantile

mapping approach to remove the biases of the variables

(temperature and precipitation) and uses the inverse

distance weighting technique for spatial interpolation.

Zhang and Georgakakos (2012) proposed the Joint

Variable Spatial Downscaling (JVSD) method for bias

correction and downscaling of the GCM outputs (tem-

perature and precipitation). The downscaling step uses

historical analog for the joint cumulative distribution

functions (CDFs) of the increments of the variables

obtained by the 12-month differencing process. A re-

lationship between the CDFs of the increments of the

modeled and observed variables is defined to correct the

biases.

The Intergovernmental Panel on Climate Change

(IPCC) Third Assessment Report (AR3) used weather

classification, regression models, and weather genera-

tors as the main statistical downscaling methods (Giorgi

et al. 2001). Weather classification methods group

a certain number of weather states or types using cluster

analysis or circulation classification schemes (Corte-

Real et al. 1999; Huth 2002; Kidson 2000; Bárdossy and
Caspary 1990; Jones et al. 1993). The weather states are
identified based on their similarity in the nearest neigh-

bors (Hay 1991; Corte-Real et al. 1999). The dominant

weather state is assigned as the predictand. Even though

the weather classification method can represent some

physical processes of climate system, it may not capture

intra-annual variability of surface variables (Wilby et al.

2003;Martin et al. 1996). The performance of the weather

classification method is similar to the complex regres-

sion methods (Zorita and von Storch 1999). Regression

models are based on linear or nonlinear relationships

between local variables as predictands and large-scale

atmospheric forcings as predictors. The widely used re-

gression models are multiple regression (MR; Murphy

1999), canonical correlation analysis (CCA; von Storch

et al. 1993), and artificial neural network (ANN). Multi-

ple regression simulates a single dependent variable from

multiple independent variables. A more complex version

of theMR is the CCAbased on the relationships between

a set of dependent and independent variables (Lattin

et al. 2003). Nonlinear relationships between the pre-

dictors and the predictands are used in the ANN model,

a computationally efficient black-box model (Crane

and Hewitson 1998). Although regression methods are

relatively simple, they tend to underestimate the vari-

ances of the variables (von Storch 1999; Burger 1996).

Another statistical downscaling technique used in AR3 is

weather generator (WG), where daily variables are dis-

aggregated by conditioning the local climate variables on

the large-scale atmospheric predictors, such as rainfall, to

resolve diurnal cycles (Kilsby et al. 1998; Fowler et al.

2000). For instance, Markov processes are used to de-

scribe the precipitation occurrence (rainy or no-rain day)

in the WGs, and then the secondary variable, such as

temperature, is downscaled by conditioning on the pre-

cipitation (Katz 1996; Semenov and Barrow 1997; Wilks

and Wilby 1999). Stochastic downscaling and weather-

typing methods are widely used in the IPCC Fourth

Assessment Report (AR4; Jones et al. 2009).

Statistical downscaling methods are computationally

advantageous over dynamical downscalingmethods (Hay

and Clark 2003; Wilby and Wigley 2000; Wood et al.

2004) although they do have drawbacks. First, statistical

relationships between predictors and predictands may be

difficult to identify. Second, transfer functions do not al-

ways capture the underlying physical mechanisms and

variability of climate systems. This study proposes a new

algorithm to disaggregate daily surface hydrometeoro-

logical variables into hourly variables using physically

and statistically based models with input from satellite

remote sensing data complemented by ground observa-

tions. In section 2, study sites and datasets are described

followed by the algorithm formulation in section 3. Sec-

tion 4 presents the tests of the algorithm, followed by

conclusions in section 5.

2. Study sites and datasets

Two sites in Brazil [Caxiuanã (CAX) and Reserva Pé-
de-Gigante (PDG)] during January and February 2002
and two sites in Arizona [Kendall (Ken) and Lucky Hills
(LKH)] during January 2002 were used to test the pro-
posed algorithm. Table 1 lists the characteristics of the

sites.

Observations of hourly air temperature for the two

sites in Brazil are from the Large-Scale Biosphere–

Atmosphere Experiment in Amazonia (LBA) project

(de Goncalves et al. 2013). The meteorological data,

including air temperature, were measured by sensors

installed at 2-m height on a 10-m tower at the sites (more

detailed information about the data is available at http://

daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1177). Observa-

tions of net radiation, sensible heat flux, air temperature,

and other meteorological and hydrological data at the

two sites in Arizona are from the Walnut Gulch Ex-

perimental Watershed (Emmerich and Verdugo 2008).

Net radiation and air temperature were measured by
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a net radiometer at 3-m height and a temperature

probe at 2-m height, respectively. Bowen ratio energy

balance technique was used to measure sensible heat

flux. Data products are publicly available online

(www.tucson.ars.ag.gov/dap/). Daily mean air tem-

perature required as an input to the proposed algo-

rithm is obtained by averaging the observed hourly air

temperature at the sites. Satellite-based remote sensing

data as the other input used in this study come from

the Geostationary Operational Environmental Satellite

(GOES) of the National Oceanic and Atmospheric

Administration (NOAA; publicly available at www.class.

ngdc.noaa.gov). GOES (from GOES-7 to GOES-15)

provides visible and infrared images with various spa-

tial and temporal coverages measured by a 19-channel

(one visible and 18 infrared) sounder and a five-channel

(one visible and four infrared) imager. Visible images of

GOES-8 centered at 0.65mm are used for the retrieval of

hourly records of meteorological variables in this study.

Spatial and temporal resolutions of visible images are 1km

and 1h, respectively. Because the proposed algorithm es-

timates air temperature at hourly resolution and for the

sites, the high temporal and spatial resolutions of the sat-

ellite data are the requirements for this study.

3. Algorithm formulation

The retrieval algorithm of hourly meteorological vari-

ables from hourly satellite data and in situ daily air tem-

perature is based on three models: 1) surface net radiation

Rn is estimated using hourly albedo a derived from

channel one (visible) of GOES (Bisht and Bras 2010), 2)

partition of net radiation into fluxes (sensible, latent, and

ground heat fluxes) is estimated using the maximum en-

tropy production (MEP) model (Wang and Bras 2011),

and 3) hourly surface air temperature is retrieved from

sensible heat flux obtained from the second model using

the half-order integral model (Wang and Bras 1999).

a. Net radiation model

Surface net radiation is expressed as

Rn 5RY
S 2R[

S 1RY
L2R[

L , (1)

where RY
S , R

[
S , R

Y
L, and R[

L are downwelling shortwave,

reflected shortwave, downwelling longwave, and up-

welling longwave radiation, respectively. Components

of the surface energy budget can be parameterized using

near-surface air temperature, humidity, and surface

temperature (Brutsaert 1975; Diak and Gautier 1983;

Idso 1981; Prata 1996; Zillman 1972; Bisht and Bras

2010). Downwelling shortwave radiation for clear sky

RYclear
S is expressed as (Zillman 1972)

RYclear
S 5

S0 cos
2u

1.85 cosu1 e0(2.71 cosu)3 10231b
, (2)

where S0 is the solar constant (1367Wm22), u is the

solar zenith angle, e0 (mb) is the near-surface vapor

pressure, and b is an empirical coefficient set to be 0.1.

It has been shown that Eq. (2) tends to overestimate

RYclear
S (Niemelä et al. 2001a,b; Bisht et al. 2005). In this

study, b is set to be 0.2 to correct the overestimation

(Bisht and Bras 2010), and e0 is approximated as the

saturated vapor pressure at air temperature Ta. The

second term in the denominator of Eq. (2) plays a mi-

nor role on RYclear
S , as it is at least one order of magni-

tude smaller than the first and third term, allowing a

convenient approximation when surface humidity data

are not available.

Surface downwelling and reflected shortwave radia-

tion are expressed in terms of cloud and surface albedo,

ac and as, respectively, as

RY
S 5 (12ac)R

Yclear
S (3)

and

R[
S 5asR

Y
S . (4)

Albedo data used in this study are derived from the

GOES visible images. The variable ac is obtained un-

der cloudy conditions, and as is obtained under clear

sky conditions. Since the temporal variability of as is

relatively low (Tsvetsinskaya et al. 2006), the obtained

as is assigned as the time-invariant parameter for each

site.

TABLE 1. General characteristics of the sites. Caxiuanã and Reserva Pé-de-Gigante are sites of the LBA project; Kendall and Lucky Hills
are sites of the Walnut Gulch Experimental Watershed.

Site Location Lat Lon Elev (m) Biome type

Caxiuanã Para, Brazil 1.728S 51.468W 23 Forest

Reserva Pé-de-Gigante São Paulo, Brazil 21.628S 47.658W 690 Savanna

Kendall Arizona, United States 31.7368N 109.9428W 1526 Grass

Lucky Hills Arizona, United States 31.748N 110.0528W 1372 Shrub
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The other components of net radiation, downwelling

and upwelling longwave radiation, are calculated based

on the Stefan–Boltzmann law as

RY
L 5 «asT

4
a (5)

and

R[
L 5 «ssT

4
s , (6)

where s is the Stefan–Boltzmann constant (5.67 3
1028Wm22K24); Ta is assumed to be equal to surface

temperature Ts as an approximation when hourly Ts is

not available. Surface emissivity «s is taken as unity

because of its small variability over the land (Dickinson

et al. 1986). Air emissivity «a is parameterized using

e0 (mb) and Ta (K) as (Prata 1996)

«a5 12 (11 z) exp(2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:21 3z

p
) , (7)

where the dimensionless parameter z is calculated as

z5 46:5
e0
Ta

. (8)

b. Sensible heat flux model

The recently developed MEP model of evapotrans-

piration (ET; Wang and Bras 2011) provides a parame-

terization of sensible heat flux used in this study. The

theory and formulation of theMEPmodel are described

in detail in Wang and Bras (2009, 2011). The MEP

model predicts the partition of net radiation into sensi-

ble H, latent E, and ground G heat fluxes according to

Rn 5H1E1G , (9)

G5
B(s)

s

Is
I0
HjHj21/6 , (10)

and

E5B(s)H , (11)

where Is is the thermal inertia of the soil, I0 is the ap-

parent thermal inertia of the air, and the inverse Bowen

ratio B is given as

B(s)5 6

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

11

36
s

r
2 1

!
(12)

and

s5
L2
y

cpRy

qs
T2
s

, (13)

where cp is the specific heat of air at constant pressure,

Ly is the latent heat of vaporization of liquid water,Ry is

the gas constant for water vapor, and qs is the surface

specific humidity at surface (skin) temperature Ts. For

a saturated soil, a dimensionless parameter s may be

expressed as

s5
D

g
, (14)

where D is the slope of the saturation vapor pressure at

Ts according to the Clausius–Clapeyron equation and g

is the psychrometric constant (Brunt 1939; Brutsaert

1982).

c. Air temperature model

The diurnal variation of near-surface air temperature

may be expressed in terms of a weighted time average

(i.e., half-order integral) of sensible heat flux analogous

to the half-order integral model of soil temperature and

ground heat flux (Wang and Bras 1999; Bennett et al.

2008):

Ta(t)5T0 1
1

I

ðt
2‘

H(s) dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(t2 s)

p , (15)

where T0 is a reference temperature. In this study, T0 is

determined in such a way that the modeled daily mean

air temperature Ta, according to Eq. (15), is equal to the

observed daily mean air temperature. The variable I is

the thermal inertia of air. In this study, I is treated as

a fitting parameter to the model described in section 4.

The tests below suggest that the integral on the right-

hand side of Eq. (15) captures diurnal variation of air

temperature reasonably well when I is treated as a fitting

parameter [see Eq. (16)].

4. Tests

a. Procedure

The hydrometeorological variables including hourly

net radiation, sensible heat flux, and air temperature are

estimated through three steps. In step one, mean daily

air temperature and cloud albedo are used to calculate

the components of radiation (long- and shortwave ra-

diation), sensible heat flux is computed for a given net

radiation using the MEP model, and hourly air tem-

perature is estimated using the half-order integral

model. In step two, the same process is repeated by using

the estimated hourly temperature as the input to update

the calculated radiation and heat flux from step one. In

steps one and two, I is set at 3000 thermal inertia units

(tiu; 1 tiu5 1 Jm22K21 s21/2) as an initial guess. In step
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three, the hourly temperature and sensible heat flux

obtained from step two are used to estimate I as the

regression coefficient between diurnal amplitudes of air

temperature DTa and sensible heat flux DH according to

the following equation (Wang et al. 2010):

I5
DH

DTa
ffiffiffiffiffiffi
v0

p , (16)

wherev0 5 2p/d, with d being the length of day (24 h). In

step three, the estimated I is used to recalculate the

hourly temperature. The schematic diagram of the pro-

cedure is illustrated in Fig. 1.

b. Results

The proposed algorithm was tested at two sites in

Brazil, Cax and PDG, during January and February

2002 and two sites in Arizona, Ken and LKH, during

January 2002. Albedo, as an input to the algorithm, is

assigned to each site based on the closest distance of the

GOES images to the coordinates (latitude and longi-

tude) of the site. Estimated hourly net radiation and

sensible heat flux at two sites in Brazil are illustrated in

Fig. 2. The lower negative net longwave radiation at Cax

agrees with the fact that more (thicker) clouds over Cax

block more surface-emitted longwave radiation from

escaping to the space. It suggests that the average cloud

albedo over Cax is greater than that over PDG during

the test period. Note that narrowband albedo data de-

rived from one visible channel of GOES centered at

0.65m (0.55–0.75m) are essentially equivalent to

broadband albedo data since the channel covers the

range of the high intensity of shortwave radiation en-

ergy.Average sensible heat flux over PDG is higher than

that over Cax. This is consistent with the fact that lower

humidity over the savanna site (PDG) results from

higher sensible heat flux compared to those over the

forest site (Cax). Figure 3 compares estimated hourly

air temperature with the corresponding observations at

the two sites. The field tests suggest that the proposed

algorithm is able to retrieve hourly records of surface

hydrometeorological variables using satellite remote

sensing data supplemented by in situ daily mean tem-

perature. The performance of the algorithm is further

illustrated through scatterplots in Fig. 4 for the two sites.

Correlation coefficients r between observed and esti-

mated air temperature of Cax and PDG are 0.90 and

0.81, respectively. The algorithm tends to underestimate

lower temperatures and overestimate higher tempera-

tures at Cax, but there are no apparent biases in the

FIG. 1. The schematic diagram of the three-step algorithm.

FIG. 2. Estimated hourly net radiation (blue dashed line) and

sensible heat flux (red solid line) at (a) Cax in January 2002 and

(b) PDG in February 2002.

FIG. 3. Estimated hourly air temperature (blue dashed line)

compared with observations (red solid line) from the LBA project

at (a) Cax in January 2002 and (b) PDG in February 2002.
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estimated temperature at PDG. This may be due to the

fact that the stability of the atmosphere over the forest

(Cax) is lower than that over the savanna (PDG). It

implies that improvement of parameterization of the

thermal inertia is needed for the unstable atmosphere

over the forest sites. Since observations of Rn and H

at Cax and PDG sites were not available to the authors,

the radiation and flux models were tested using field

observations from the Walnut Gulch Experimental

Watershed. Figure 5 compares estimated hourly net

radiation with the corresponding observations at Ken

and LKH sites for January 2002. Figure 5 indicates that

the estimated hourly Rn is in close agreement with the

observed hourly Rn. The slightly overestimated Rn, in

particular, at LKH site may be caused by the use of air

temperature as a surrogate of surface temperature,

leading to a decrease in R[
L and an increase in Rn [see

Eqs. (1), (6)]. Figure 6 shows a close agreement between

the modeled and observed H. Note that unrealistic

values that appeared by spurious spikes in Fig. 6 indicate

the necessity of the other field experiment to measure

FIG. 4. Estimated vs observed air temperature corresponding to

Fig. 3 for (a) Cax (r 5 0.90) and (b) PDG (r 5 0.81).

FIG. 5. Estimated hourly net radiation (blue dashed line) com-

pared with observations (red solid line) from the Walnut Gulch

Experimental Watershed at (a) Ken and (b) LKH in January 2002.

FIG. 6. Estimated hourly sensible heat flux (blue dashed line)

comparedwith observations (red solid line) from theWalnutGulch

Experimental Watershed at (a) Ken and (b) LKH in January 2002.
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heat fluxes (such as the eddy covariance method). The

corresponding scatterplots of Rn and H in Figs. 7 and 8

indicate close agreement between the estimated and

observed fluxes. Note that any uncertainty of the results

may be caused by the uncertainty of the remote sensing

data and the way that albedo is assigned to each site,

which is based on the closest distance of the GOES

images to the coordinate of the site. Figure 9 indicates

that the estimated air temperature agrees closely with

the observations. Correlation coefficients between ob-

served and estimated air temperature of Ken and LKH

are 0.80 and 0.74, respectively, shown in Fig. 10. The

differences between estimated and observed Rn and H

obtained from the net radiation and the sensible heat

flux models may cause the discrepancies between esti-

mated and observed Ta because the air temperature

model requires sensible heat flux obtained from the

sensible heat flux model and net radiation from the net

radiation model. The disaggregated hourly air temper-

ature is affected by the thermal inertia parameter, daily

mean air temperature, and GOES images as inputs to

the algorithm. For any given sensible heat flux, greater

thermal inertia leads to smaller diurnal amplitude of air

temperature and vice versa [see Eq. (15)]. Daily mean

FIG. 7. Estimated vs observed net radiation corresponding to Fig. 5

for (a) Ken and (b) LKH.
FIG. 8. Estimated vs observed sensible heat flux corresponding to

Fig. 6 for (a) Ken and (b) LKH.
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temperature affects diurnal variations of air tempera-

ture through longwave radiation. When daily mean

temperature decreases, upward longwave radiation de-

creases, leading to an increase in net radiation and

sensible heat flux and a greater amplitude of the diurnal

variation of air temperature, and vice versa. The impact

of uncertainty of the GOES data on air temperature was

studied at the two sites (Ken and LKH). Relative un-

certainty in the GOES albedo data is about 15% (Liang

2008), which leads to the error of 0.06–0.10 in cloud al-

bedo ranging from 0.4 to 0.7. The error is added to the

albedo data and the algorithm was used to recalculate

net radiation, sensible heat flux, and air temperature.

The uncertainty in the albedo data causes the uncertainty

in the estimated air temperature through the three

models.

1) Net radiation model: Change in albedo impacts

down- and upwelling shortwave radiation. For RYclear
S

ranging from 900 to 1100Wm22, the error of the GOES

data leads to an average error of 30–80Wm22 in net

shortwave radiation and net radiation [see Eqs. (3), (4)].

2) Sensible heat flux model: 30–80Wm22 error in net

radiation causes an average error of 15–40Wm22 in

sensible heat flux through MEP model.

3) Air temperature model: 15–40Wm22 error in

sensible heat flux leads to an average error of 1–2K in air

temperature through the half-order integral model.

The close agreement between the observed and es-

timated air temperature over the sites with different

climate (see Table 1) suggests that the MEP and the

half-order time integral models used in the proposed

algorithm have the potential to improve the estimates

of the variability and magnitude of air temperature

globally. Although the physically based models (e.g.,

transfer based models) often use gradients of the var-

iables such as temperature and humidity, the MEP

model uses only one level of the inputs, and the vertical

profiles of the inputs are avoided. Amajor advantage of

the algorithm is that the algorithm requires only mean

daily temperature and satellite-based single-level obser-

vations as inputs. The algorithm has lower computational

FIG. 9. Estimated hourly air temperature (blue dashed line)

comparedwith observations (red solid line) from theWalnutGulch

Experimental Watershed at (a) Ken and (b) LKH in January 2002.

FIG. 10. Estimated vs observed air temperature corresponding to

Fig. 9 for (a) Ken (r 5 0.80) and (b) LKH (r 5 0.74).
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cost compared to other existing dynamical downscaling

methods.

5. Conclusions

This study develops a new physically and statistically

based algorithm for retrieving hourly surface hydro-

meteorological variables including air temperature, ra-

diation, and heat flux. Tests of the algorithm at multiple

sites located in different geographical regions show

that hourly estimates of these variables are in close

agreement with observations. The proposed algorithm

distinguishes itself from the existing approaches by

effective use of available information (mean daily tem-

perature, satellite-based images, and the thermal in-

ertia) from only one level. Decision makers and water

resources planners can use the retrieved hourly data

to drive other land, ecosystem, and coupled climate–

hydrology–water resources models.
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