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ABSTRACT

We examined the historical record of mountain

pine beetle (Dendroctonus ponderosae Hopkins)

activity within Yellowstone National Park,

Wyoming, for the 25-years period leading up to the

1988 Yellowstone fires (1963–86) to determine

how prior beetle activity and the resulting tree

mortality affected the spatial pattern of the 1988

Yellowstone fires. To obtain accurate estimates of

our model parameters, we used a Markov chain

Monte Carlo method to account for the high degree

of spatial autocorrelation inherent to forest fires.

Our final model included three statistically

significant variables: drought, aspect, and sus-

tained mountain pine beetle activity in the period

1972–75. Of the two major mountain pine beetle

outbreaks that preceded the 1988 fires, the earlier

outbreak (1972–75) was significantly correlated

with the burn pattern, whereas the more recent

one (1980–83) was not. Although regional drought

and high winds were responsible for the large scale

of this event, the analysis indicates that mountain

pine beetle activity in the mid-1970s increased the

odds of burning in 1988 by 11% over unaffected

areas. Although relatively small in magnitude, this

effect, combined with the effects of aspect and

spatial variation in drought, had a dramatic impact

on the spatial pattern of burned and unburned

areas in 1988.
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INTRODUCTION

Both insect outbreaks and forest fires constitute

important disturbance processes in North American

forests, particularly in the Rocky Mountain West.

Research in this area suggests that both insects and

fire play a crucial role in the continuation and

healthy functioning of the ecosystem (Despain

1990; McCullough and others 1998; Furniss and

Renkin 2003). A number of recent studies have

examined the phenomenon of disturbance inter-

actions, in which the ‘‘memory’’ inherent to the

slow regeneration of forests mediates spatiotem-

poral interactions between disturbance events

separated by years or even decades (Amman 1991;

Amman and Ryan 1991; Veblen and others 1994;

McCullough and others 1998; Fleming and others

2002; Bebi and others 2003; Kulakowski and others

2003; Bigler and others 2005). At their study site in
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northwestern Colorado, Kulakowski and others

(2003) found that a low-severity fire in 1950

burned more area than would be expected in

stands that had been less affected by a 1940s spruce

beetle outbreak. They hypothesized that a prolif-

eration of moist understory vegetation that fol-

lowed beetle-induced mortality in these stands may

have prevented the low-severity fire from breach-

ing these beetle-affected areas. They further re-

cognized the need for exploring beetle-stand

replacing fire interactions under extreme drought,

suggesting fires may behave differently under

varying fire weather/beetle intensity conditions.

On the other hand, the idea that forest pests and

pathogens may leave forests more vulnerable to fire

originated in 1909 (Hopkins 1909) and has recently

become of interest to public policy makers con-

cerned about large-scale events that may threaten

life or private property. This issue is directly ad-

dressed in the recent 2004 Healthy Forests In-

itiative, which cites that ‘‘decades of hazardous

buildup of dense brush and undergrowth, coupled

with drought conditions, insect infestation and

disease make forests and rangelands. . . vulnerable

to often intense and environmentally destructive

fires. . . . The combination of continuing drought

and an increase of drought stressed and insect

damaged trees and brush has resulted in a greater

potential for large wildfires in the West.’’

Considering the importance of this question to

the management of our western forests, these dis-

turbance interactions need considerably more

study. In this analysis, we used an extensive and

largely unexploited data set documenting the

incidence of insect outbreaks in Yellowstone

National Park (YNP) to answer the following re-

search question: Did the previous decades of

mountain pine beetle activity in YNP have a mea-

surable influence on the spatial pattern of the 1988

Yellowstone fires?

METHODS

Analytical Approach

The forestry and fire community has long

embraced the notion that insect outbreaks can af-

fect both the occurrence and the intensity of an

extreme fire event. In this analysis, we considered

only the final pattern of burned areas in Yellow-

stone following the 1988 fires in order to under-

stand why some areas burned and some did not,

conditional on the preexisting conditions amenable

to an extreme fire. In addition to the spatial extent

and intensity of mountain pine beetle activity from

1963 to 1986, we included information on a

number of variables that may have played a role in

promoting fire. These variables fall into several

broad categories (Table 1): climate/environmental

factors, geographic factors, and previous fire his-

tory. By including all of these factors, we ascribed

as much variability as possible to non–insect-re-

lated variables, and the resulting analysis of the

role of mountain pine beetle in promoting fire is

conservative.

Data

The 1988 Yellowstone fires (Figure 1C) are one of

the most well-documented large-scale disturbances

in American history (Franke 2000; Turner and

others 2003; Wallace 2004). A complete GIS data-

base is available, with a daily record of fire extent

and fire type (crown versus ground versus non-

forested fire) for the entire duration of the fires

(Despain and others 1989; Rothermel and others

1994).

To examine the influence of previous mountain

pine beetle activity on the 1988 Yellowstone fires,

we compiled all available aerial detection surveys

of forest insect activity within the park during the

years 1963–86. Hardcopy maps (1:125,000 scale),

initially provided by the US Forest Service

Northern Region Forest Health Protection Group

and archived in YNP, were digitized using a high-

resolution scanner and integrated into a complete

GIS database by a process of manual (on-screen)

vectorization of the polygon data. This geo-

graphic database was georeferenced using existing

(on-image) map grid points and given attributes

(insect agent, intensity of tree mortality) accord-

ing to the information provided in the original

maps. Repeated outbreaks, widespread activity,

and the broad distribution of host species (pri-

marily lodgepole pine [Pinus contorta Dougl. Var.

latifolia] and whitebark pine [Pinus albicaulis

Engelm.]) of the mountain pine beetle corre-

sponded to the broad spatial extent of the 1988

Yellowstone fires. Therefore, this insect was cho-

sen as the agent for this particular analysis. As

shown in Figure 2, mountain pine beetle activity

during this time was cyclic with a periodicity of

approximately eight years. In this analysis, we

compared two periods, 1972–75 and 1980–83, of

widespread beetle activity to evaluate its impact

on fire risk at two different time lags. Figure 1D

represents the spatial pattern of areas affected by

mountain pine beetles in these two outbreaks.

To account for other potentially important risk

factors, we compiled spatial datasets of geographic,
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topographic, and climatological factors that may

have also played a role in determining which areas

burned in 1988 and which did not (Table 1). These

data layers were resampled or digitized as appro-

priate on a common 100 m resolution raster grid.

This data set was then exported to the statistical

software package R (R Development Core Team

2005) and resampled every 500 m, so that each

data point represented a 100 · 100 m pixel from the

original data set, spaced 500 m apart (centroid to

centroid). The resampling was necessary to reduce

the size of the data set for computational speed. The

final data set was a 219 · 209 grid (45,771 pixels)

from which pixels with no data (inside the YNP

bounding box but outside the park boundary),

pixels representing water-cover types, and pixels

identified as nonforest were removed. There were

28,748 forested pixels in the final data set.

The aerial survey data are, by their nature, the

least spatially accurate data set included in this

analysis. Based on aerial survey–satellite compari-

son (H J. Lynch personal observation) and survey

sampling protocols (US Forest Service Aerial

Detection Survey Accuracy Assessment unpub-

lished), polygons representing insect activity are

typically within 250 m of their actual location.

Relative to the scale of the insect activity in each of

the two periods (see Figure 1D), the accuracy of

these data is more than sufficient for this analysis.

The resampling also helped to buffer the analysis

from minor inaccuracies at the interface between

affected and unaffected areas.

Data Analysis

In this analysis, the independent variable of interest

was the binary (0,1) variable indicating whether or

not a particular area burned in the 1988 Yellow-

stone fires. As such, we logit transformed the

binary response variable in order to perform the

following regression analysis:

log
yi

1 � yi

� �
¼ b0 þ

X
k

bkxik ð1Þ

where yi represents the burn status of the pixel

(yi = 1 if the pixel burned), b0 represents the

intercept, and bk represents the regression coeffi-

cient for covariates k and xik is the value of cov-

ariate k for pixel i.

Ordinary logistic regression implicitly requires

that individual data points are independent (Fox

1997); this basic requirement is immediately

violated in any analysis involving a spatial context.

This is particularly true in the analysis of conta-

gious forest disturbances, in which the underlying

contagious nature of fire spread dictates that

neighboring regions are not independent. Accurate

determination of the regression coefficients

requires that the nonindependent nature of the

dependent variable be accounted for. One way to

account for nonindependence among neighboring

yi is to add the sum of neighboring values as a

separate independent variable to the logistic

regression model — a technique known as ‘‘maxi-

mum pseudolikelihood estimation’’ (PSE) (Besag

Table 1. Data Sets Used in the Analysis of the Yellowstone Fires

Data Layer Abbreviation Original Data Type Source

Climate dataa Max. daily temp (�F) tmax Text NCDCb

Avg. daily wind speed (mph in 10ths) wind Text NCDC

Total precip. (100ths of an inch) prcp Text NCDC

Palmer Drought Severity Index pdsi Text NCDC

Geographic data Elevation (m) elev 30-m raster NPSC

Slope (�) slope 30-m raster NPS

Aspect d 50-m raster derived from elev

Pre-1988 cover type e 50-m raster NPS

Historical Previous fire history previous. burn Polygon shapefile NPS

Mountain pine beetle 1972–75 mpb72to75 Polygon shapefile aerial survey

Mountain pine beetle 1980–83 mpb80to83 Polygon shapefile aerial survey

aAn inverse-distance weighting was used to extrapolate climate variables from the three nearest weather stations available through the National Climate Data Center
(Yellowstone Lake, West Yellowstone, and Yellowstone Park, Mammoth Wyoming). This accounts for broad-scale patterns of climate variability. Factors affecting microclimatic
conditions (slope, aspect, elevation) were included as separate variables.
bNCDC = National Climatic Data Center
cNPS = National Park Service
dAspect was initially divided in eight categories: north (N), northeast (NE), east (E), southeast (SE), south (S), southwest (SW), west (W), and northwest (NW). Areas of zero
slope were designated as flat; flat areas were used as the basis of comparison for the other aspect factors.
ePre-1988 cover types were grouped into the following categories: aspen (As), Douglas-fir (early [DFO] mid = [DF1] or late-successional [DF2]), Engelmann spruce/subalpine
fir (late-successional [ESSF2]), Krumholtz (Kr), lodgepole pine (early [LPPO], mid = [LPP1], or late-successional [LPP2] ), pygmy lodgepole pine (PyLPP), whitebark pine
(early [WBPO], mid = [WBPl], or late-successional [WBP2], and nonforested.
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1975). However, the underlying nonindependence

of the neighboring values remains, and, unlike a

true maximum likelihood estimator (which is both

consistent and asymptotically efficient), the maxi-

mum pseudolikelihood estimatior is inefficient,

especially in cases where spatial interaction is

strong (Besag 1975; Wu 1994).

Recent advances in statistics have provided

landscape ecologists with an alternative approach.

This technique uses Markov chain Monte Carlo

(MCMC), which captures the latent spatial auto-

correlation more accurately. In addition, MCMC

has been shown to represent the estimate errors

more accurately. A brief outline of this method

will be presented here. Further details may be

found in Huffer and Wu (1998) and Wu and

Huffer (1997).

The likelihood function for the regression anal-

ysis introduced in Eq. (1) may be expressed as:

l b; cð Þ ¼ exp a0T yð Þð Þ
c að Þ ð2Þ

where a represents the vector of regression coeffi-

cients in the model (the prime symbol represents

the transpose in this equation), and T(y) represents

the vector of sufficient statistics; that is:

T 0 yð Þ ¼
XN

i¼1
yi;

XN

i¼1
x1i yi;

h
XN

i¼1
x2iyi; :::;

XN

i¼1; i 6¼ j
cyiy

�
j

i ð3Þ

The asterisk(*) in Eq. (3) indicates that only nearest

neighbors should be summed over, and c (a)
(Eq. [2]) represents the intractable normalizing

Figure 1. A Continental United States. Idaho, Wyoming, and Montana are shaded in gray. B ldaho, Wyoming, and

Montana. Yellowstone National Park is shown in black. C Major fire complexes that comprised the 1988 Yellowstone fires.

Yellowstone Lake is hatched in gray. D Mountain pine beetle activity in 1972–75 (dark gray) and 1980–83 (light gray). This

figure represents only those areas that were affected by mountain pine beetle activity, of any intensity, in each of the four

peak outbreak years.
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function for the likelihood resulting from themutual

interdependence of the pixel locations in the data

set. Note that the c parameter in Eq. (3) represents

the strength of contagious interaction; thus it is an-

other regression parameter to be estimated in the

same manner as the other covariates in the model.

Although many reasonable definitions of ‘‘nearest

neighbor’’ have been used in the context of spatial

autocorrelation (several are discussed by Huffer and

Wu [l997]), we used the scheme in which the four

nearest ‘‘rook’’ neighbors are considered (Besag

1974). In this way, our analysis remains consistent

with earlier work by Huffer andWu (1998), andWu

and Huffer (1997) while capturing the dominant

mode of fire spread (that is, spread over a shared

boundary as opposed to less frequent long-distance

spread by means of fire ‘‘spotting’’).

The basic principle of MCMC in this context is as

follows: A Gibbs sampler using initial guesses for

the regression coefficients is used to generate a

collection of different possible realizations of the

data. After a sufficient number of realizations in the

Markov chain have been generated, the distribu-

tion of these realizations will approach the distri-

bution function of the true likelihood in Eq. (2),

which can be maximized numerically to obtain

estimates of the regression coefficients a = {the

intercept b0, the covariate regression coefficients b,
and the nearest-neighbor coefficient c}. Parameter

estimate variances were estimated using the

inverse Fisher information matrix, as discussed by

Huffer and Wu (1998) and Wu and Huffer (1997).

Model Selection

Because of its computational complexity, MCMC

methods are not suitable for model selection (for

example, by means of forward step-wise regres-

sion), and an appropriate set of models was chosen

based on the pseudolikelihood estimation tech-

nique. There were 11 variables considered for the

final model (Table 1), within which were eight

factors for aspect and 12 categories for pre-1988

cover type. In the first step, all 11 variables were

put into the model, and a combination of forward

and backward stepwise regression (using the R

function ‘‘step’’) was used to select the best model

according to Akaike’s information criterion. To

further simplify the model, variables that were not

significant at the 1% confidence level (slope,

cover.typeLPPl, and cover.typeESSF2) were elimi-

nated; the four significant aspect variables (which

spanned the continuous range, or northwest-

north-northeast-east) were combined into a single

variable, which we called ‘‘northeast’’. Of the two

mountain pine beetle infestations considered, only

the 1972–75 outbreak (mpb72to75) was strongly

correlated with the 1988 fires, whereas the 1980–83

outbreak (mpb80to83) was not. Therefore, in our

final model, we did not include information about

the more recent outbreak. Multicollinearity among

the independent variables would tend to increase

the true variance in our estimated model coeffi-

cients and could lead, in theory, to variables being

selected for the final model that were not in fact

significant. In this analysis, multicollinearity was

not a significant problem, and the largest variance

inflation factor in the final model was only 1.74

(Fox and Monette 1992).

Because the MCMC method takes into account

neighboring burn states to determine the proba-

bility of burning, pixels that were not included in

the model (such as the boundary of the park,

nonforested areas, and water bodies) required

(fixed) predefined burn states. Our approach was to

assign the park border and interior nonforested

areas a burn state according to a binary random

variable with probability of burning equal to the

actual probability of burning over those pixels

(Pburn = 0.415). The model therefore gets no spatial

information from these pixels. Water bodies were

set to burn = 0, because under no circumstances

would those areas have burned. In reality, the final

burn pattern in 1988 was informed to some extent

by the actual burn pattern along the boundary and

in non-forested areas, and our approach is there-

fore conservative. Our final statistical model:

logitðburnÞ � pdsiþ northeastþmpb72to75 ð4Þ

contained only three variables: pdsi (Palmer

Drought Severity Index), northeast (representing

all aspects within 90� of 22.5� NE), and mpb72to75

(which represents all areas repeatedly affected by

Figure 2. Percent of Yellowstone National Park (YNP)

affected by mountain pine beetle activity over the period

1969–86. There was negligible activity from 1963 to 1968,

and these data were not included in the plot. Years con-

sidered in this analysis are represented by solid circles.
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insect activity of any intensity in each of the four

outbreak years) (Table 1).

RESULTS

The results of the analysis are summarized in Table 2

and Figure 3. Figures 4A and B show the burn

probabilities as modeled either when no autocorre-

lation was accounted for, or when only autocorre-

lationwas included (that is, when themodel consists

of only an intercept and an autocorrelation param-

eter (Table 2)). As shown in Figure 4A, the simple

autologistic model, which ignores spatial autocor-

relation in fire spread, does not capture the spatial

scale of the 1988 fires; it shows both very small-scale

variation in the log-odds of burning (due to the as-

pect variable) and very large-scale variation (due

primarily to drought). This model is also strongly

biased and overestimates the overall amount of

burning. Figure 4B shows that a model including

only nearest-neighbor interactions is able to capture

the overall scale at which burning occurs. However,

because it lacks spatial information (other than the

location of water bodies, which biases the neigh-

boring pixels in the direction of not burning), this

model cannot identifywhich areas aremore likely to

have burned than others.

Our final (site-specific+autocorrelation) model

(Figure 4C and D) captures both the spatial scale of

the 1988 fires and its placement across the park. All

three covariates in our final model are statistically

significant. When random values are used for the

nonforested and boundary areas, the model cor-

rectly classifies 61.0% of all pixels. The fraction of

misclassified burned pixels (6,373 of 15,749) is

approximately equal to the fraction of misclassified

unburned pixels (4,849 of 12,999); the model

therefore produces more or less unbiased predic-

tions of fire risk. Figure 4C illustrates the fit of our

model in this case, which captures both the large

scale pattern as well as many of the finer scale

details of the final burn pattern. This highlights the

interaction between site-specific fire risk and the

strong autocorrelation inherent to fire spread; both

components are necessary to generate a reasonably

accurate statistical model of the event. However,

when the same model is used with the actual pat-

tern of burned patches within the nonforested and

boundary areas, the model correctly identifies

87.3% of all pixels. The fit of the model in this case

is shown in Figure 4D. The right panels of Fig-

ure 4A–D indicate the differences between the

model prediction and the actual burn pattern.

Visual inspection of Figure 4 leads us to suspect

that the model errors are not spatially random.

However, formal tests of autocorrelation among the

residuals of a model that itself contains an auto-

correlation component are not yet available (Cliff

and Ord 1981; Lichstein and others 2002). Here we

take advantage of the fact that the number of sites

is much larger than the number of constraints

imposed by the model, and we calculate Moran’s I

in the usual manner, using xij = 0 and 1 for cor-

rectly and incorrectly identified pixels, respectively

(I = 0.86, 0.81, 0.80,0.69 for Figure 4A–D, respec-

Table 2. Best-fit Model Estimates (SE)

b0 pdsi northeast mpb72to75 c Figure 3

Logistic (site-speeific only) )6.23 (0.18) )1.13 (0.03) 0.22 (0.02) 1.35 (0.04) A

MCMC (autocorrelation only) )4.45 (0.04) 2.25 (0.02) B

PSE (site-specific + autocorrelation) )7.15 (0.61) )0.32 (0.11) 0.26 (0.08) 0.46 (0.12) 2.67 (0.04)

MCMC(site-specific + autocorrelation) )5.02 (0.08) )0.08 (0.01) )0.09 (0.02) )0.11 (0.01) )2.27 (0.02) C,D

The top line represents the best-fit estimates using standard logistic regression with no autocorrelation variable; the second line represents the results of Markov chain Monte
Carlo (MCMC) maximization for the c-only model; the bottom two lines represent the pseudolikelihood estimates (PSE) and MCMC estimates respectively, for the full model,
which includes both site-specific variation in the covariates and autocorrelation.
Estimated errors for the MCMC-derived estimates are calculated from the Fisher information matrix, as detailed in Huffer and Wu (1998).
Monte Carlo variability is not reported but is typically a factor of 10 smaller than the reported estimated error.

Figure 3. Summary of the results of this analysis. The x-

axis represents the various covariates included in the fi-

nal model. Error bars represent 95% confidence limits for

the value of b̂.
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tively) (Upton 1985). (As noted by Cliff and Ord

[1981], in the case of binary data, Moran’s I

reduces almost exactly to the simpler but generally

less powerful join-count statistic). A permutation

test based on 999 random permutations of pixels

within the error map confirms that the model

errors are not spatially random (P < 0.001 in all

cases) (Cliff and Ord 1981). This is not surprising,

given the strong autocorrelation inherent in forest

fires and the subsequent spatial aggregation of the

burned areas. When the actual pattern of burned

patches within the nonforested and boundary areas

is used, the model errors occur almost entirely

along the boundaries where burned patches abut

unburned areas, reflecting the difficulty in pre-

dicting exactly where a large fire complex will end.

The variables ‘‘northeast’’ and ‘‘mpb72to75’’ are

both 0/1 factors, therefore, the relative strengths

of each factor can be compared using the magni-

tudes of their coefficients. The range of the vari-

able ‘‘pdsi’’ was 2.01, so its overall impact on the

odds of burning in 1988 was approximately 65%

greater than that of the other two factors. We can

use Eq. (1) to calculate the change in the odds

of burning in 1988 associated with each of these

variables. For example, for areas repeatedly

affected by mountain pine beetles during the

1972–75 outbreak ðb̂ = 0.108), the odds of burn-

ing during the summer of 1988 increased by 11%.

We infer from this that mountain pine beetle

activity some 13–16 years prior to the 1988 event

served to increase fire risk and may have ultimately

influenced the spatial pattern of the burned areas.

The effect of repeated beetle activity in this period

is comparable in magnitude to other factors in our

model that affect fire risk, such as drought and

aspect.

DISCUSSION

As noted by other authors (Knight and Wallace

1989), the pre-1988 Yellowstone landscape was a

patchy mosaic representing the accumulated his-

tory of biological and geological processes. The

1988 Yellowstone fires proceeded across the land-

scape under the constraints of this heterogeneity,

and the final pattern of burned areas represents a

complex mixture of site-specific flammability and

the contagious nature of fire itself. Using the

MCMC technique described above, we are able to

untangle these two components to understand

what site-specific characteristics, such as previous

insect activity, predispose some patches to burn

while other patches are left untouched.

Figure 4. A Left: Probability of burning (black = burned) from the simple logistic model (see Table 2). Right: Misclassified

pixels (black). B–C Left Simulated probability of burning (black = burned) from the model incorporating only spatial

autocorrelation (B) and the full model (C) (see Table 2) using a binary random variable for nonforested and boundary

pixels. These maps represent the probability of burning (dark gray = increasing probability of burning) over 400,000 Markov

chain Monte Carlo (MCMC) iterations (sampled every 10 maps) following an initialization period of 50,000 iterations and

starting with all forest pixels initially unburned. These maps represented an average over 10 different simulations rep-

resenting 10 different randomly drawn boundaries. The gray scale ranges from zero probability of burning (white) to unity

probability of burning (black). Right: Misclassified pixels (black). D Left: The full model (same as C) is used to simulate the

probability of burning using the known burn values in nonforested and boundary areas. The same protocol was used as

described for maps B and C except that only one set of values was used for the non-forested and boundary values (the

known values) Right: Misclassified pixels (black).
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Before turning to the main question of how

mountain pine beetle activity influences fire risk, it

is important to consider the biological relevance of

the other two variables that remained significant in

the final model—drought and aspect. It is not

surprising that fine-scale spatial variation in

drought was significant in our model; the role of

drought in promoting the extreme fire conditions

present in 1988 has already been demonstrated

(Christensen and others 1989; Renkin and Despain

1992; Schoennagel and others 2004).

The second factor, aspect, is also known to affect

fire spread, although our results suggest a different

mechanism than has been proposed by other au-

thors (Heyerdahl and others 2001). South-facing

slopes receive more incident sunlight in the

northern hemisphere, and the difference in solar

radiation received by north- and south-facing

slopes is greatest at the 45� latitudes of YNP (Hol-

land and Steyn 1975). Increased solar radiation on

south-facing slopes leads to earlier snowmelt in the

spring as well as warmer and drier conditions in the

summer, thus increasing fire risk (Heyerdahl and

others 2001). On the other hand, because more

moisture is retained by northern slopes they tend to

support higher fuel loads than south-facing slopes.

Fires typically spread more quickly upslope; and

because the spread of the 1988 fire generally pro-

ceeded in a southwest-to-northeast direction, the

northeast aspects were typically on the leeward

side of the mountains from the advancing fire

front. The fires would thus have spread most slowly

on the northeast-facing slopes, generally backing

downslope. We hypothesize that this slow burning

on the northeast-facing slopes, coupled with their

increased fuel loads, may have led to relatively

more, but slower, fire spread in these areas.

It is important to note that because cover-type

was included in the original set of covariates,

the effect of aspect is in addition to potential

differences in cover-type. Models that included

cover type but excluded aspect did not fit the data

as well, so we infer that the effect described

above—increased risk of fire in areas of northeast-

ern aspect—results from something other than

simple differences in the composition or age of the

stands in these areas.

The goal of this analysis was to quantify the

underlying geographic and historical factors

affecting the spatial pattern of forest fires across a

landscape, including the temporal history of

mountain pine beetle activity. We found that even

when a wide range of potential variables were in-

cluded in our model, mountain pine beetle activity

remained a statistically significant factor that

correlated well with the final pattern of burned

areas after the 1988 Yellowstone fires. Repeated

mountain pine beetle activity (as opposed to spo-

radic or short-duration activity) 13–16 years prior

to the fire correlated significantly with the log-odds

of burning and was found to increase the odds of

burning by approximately 11%. Whereas beetle

activity during the first outbreak (13–16 years be-

fore the fire) was correlated with an increase in fire

risk, activity during the second outbreak (5–8 years

before the fire) showed no correlation with the log-

odds of burning in 1988 once spatial interaction

effects had been accounted for.

Identification of the biological mechanisms lead-

ing to this delayed increase in fire risk will require

further study, although the time scale of the process

is consistent with the time required for significant

release of understory vegetation. Vertical heteroge-

neity, arising from the combination of rapid release

of understory trees and the presence of surviving

mature individuals may provide ladder fuels suffi-

cient to increase fire risk. It is almost certain that, to

varying degrees, both fire-promoting and fire-

inhibiting changes are occurring simultaneously in

the stand over the decades following substantial in-

sect activity. Our results imply that the secondary

effects of beetle activity on stand structure make a

greater contribution to the increase in fire risk over

the long term than the primary effects of beetle-

induced tree mortality (and the subsequent accu-

mulation of dead fuel). In this,we concurwithBigler

andothers (2005),whoalso concluded that themore

important effect of beetle activity on fire risk is

through a change in stand structure and composi-

tion, as opposed to an increase in fuels.

These results accord with a number of

other studies examining interactions between the

mountain pine beetle and forest fires. Kulakowski

and others (2003) found that areas affected by a

1940s spruce beetle outbreak were burned less

often by a 1950 fire than would be expected. Be-

cause there was a difference of only 3 years be-

tween the peak of the beetle infestation (1947) and

the fire, our interpretation would be that not en-

ough time had elapsed for a sufficient turnover in

stand structure to cause an increase in fire risk. In

fact, their negative correlation is consistent with

the slight (though not statistically significant)

negative correlation between the more recent

1980–83 outbreak and the 1988 fires. Moreover,

Bigler and others (2005) reported that in 2002 the

same areas affected by the 1940s spruce beetle

outbreak did, in fact, burn more often than would

be expected. This finding is consistent with the

overall picture of a delayed increase in fire risk
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mediated by a change in stand structure that is

associated with beetle-induced defoliation and tree

mortality. As noted by Bigler et al. (2005), it is

important to emphasize the role of pre-fire stand

structure in influencing the spatial pattern of forest

fires even under extreme fire conditions such as

those experienced during the 1988 Yellowstone

fires.

This analysis focused specifically on how the

mountain pine beetle may influence landscape-le-

vel heterogeneity and affect fire risk. However,

there are several other forest pests of concern in the

Yellowstone region, including other bark beetles

such as Douglas-fir beetle (Dendroctonus pseudotsugae

Hopkins), spruce beetle (Dendroctonus rufipennis

Kirby), and western balsam bark beetle (Dryocoetes

confuses Swaine), as well as defoliating species such

as the western spruce budworm (Choristoneura

occidentalis Freeman). Previous studies have shown

that defoliating insects, such as the western spruce

budworm, may promote (Fleming and others 2002)

or inhibit forest fires (H. L. Lynch and P. R.

Moorcroft, unpublished), and it seems likely that

the influence that insects exert on fire risk differs

according to feeding guild. Further research is

needed to improve our understanding of variations

in insect–fire interactions that stem from differ-

ences in feeding guilds, as well as to identify the

mechanisms underlying the complex temporal

component of fire risk due to insect activity.

CONCLUSIONS

In this analysis, we found a measurable influence of

mountain pine beetle activity in increasing the odds

of burning in the 1988 Yellowstone fires, by ap-

proximately 11% for sustained activity in the period

1972–1975. More recent insect activity (specifically

1980–1983) was not significantly correlated with

increased risk of burning, and mechanisms under-

lying this delayed increase in fire risk will require

further research. The results of this study are an

important component to understanding the nature

of the 1988 Yellowstone fires, and the interactions

between insect activity and forest fire risk more

generally. As more detailed and sophisticated spa-

tial data becomes available, it will become increas-

ingly important to develop techniques appropriate

to the new information, both in the field of ecology

and also in spatial statistics. The highly auto-

correlated nature of forest fires make Markov chain

Monte Carlo techniques particularly important, and

in this analysis we have demonstrated their utility

to a question of pressing concern.
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