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[1] Insights into how terrestrial ecosystems affect the Earth’s response to changes in
climate and rising atmospheric CO2 levels rely heavily on the predictions of terrestrial
biosphere models (TBMs). These models contain detailed mechanistic representations
of biological processes affecting terrestrial ecosystems; however, their ability to
simultaneously predict field-based measurements of terrestrial vegetation dynamics and
carbon fluxes has remained largely untested. In this study, we address this issue by
developing a constrained implementation of a new structured TBM, the Ecosystem
Demography model version 2 (ED2), which explicitly tracks the dynamics of fine-scale
ecosystem structure and function. Carbon and water flux measurements from an eddy-flux
tower are used in conjunction with forest inventory measurements of tree growth and
mortality at Harvard Forest (42.5�N, 72.1�W) to estimate a number of important but
weakly constrained model parameters. Evaluation against a decade of tower flux and
forest dynamics measurements shows that the constrained ED2 model yields greatly
improved predictions of annual net ecosystem productivity, carbon partitioning, and
growth and mortality dynamics of both hardwood and conifer trees. The generality of the
model formulation is then evaluated by comparing the model’s predictions against
measurements from two other eddy-flux towers and forest inventories of the northeastern
United States and Quebec. Despite the markedly different composition throughout this
region, the optimized model realistically predicts observed patterns of carbon fluxes and
tree growth. These results demonstrate how TBMs parameterized with field-based
measurements can provide quantitative insight into the underlying biological processes
governing ecosystem composition, structure, and function at larger scales.
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1. Introduction

[2] Terrestrial biosphere models developed over the past
two decades have been an important vehicle for inference
about how terrestrial ecosystems will respond to changes in
climate and atmospheric CO2 levels, and how resulting
changes in ecosystem structure, composition, and function
will feed back and affect the atmosphere. Because the
biological processes governing terrestrial ecosystem dynam-
ics operate on a wide range of spatial and temporal scales,

individual measurement programs only yield information on
a subset of the processes governing the dynamics of vege-
tation change and belowground decomposition. For example,
eddy-flux towers measure net carbon uptake by terrestrial
ecosystems on timescales ranging from hours to decades, but
only at spatial scales of 1 km2 or smaller [Wofsy et al., 1993;
Baldocchi et al., 1996]; satellite-derived estimates of leaf
phenology provide information on seasonal-to-interannual
changes in vegetation, but only with regard to foliar cover;
and forest inventories provide information on aboveground
structural components at spatial scales ranging from individ-
ual trees to the continent, but typically only at annual-decadal
scales [Frayer and Furnival, 1999; Penner et al., 1997].
[3] The conventional approach to evaluating terrestrial

biosphere models has been to assess their ability to reproduce
regional or global patterns of ‘potential’ (i.e., inferred pre-
human settlement) vegetation, and seasonal-interannual pat-
terns of CO2 concentrations measured at remote atmospheric
flask monitoring stations. Results from ‘off-line’ model inter-
comparisons indicate that most terrestrial biosphere models
are able to replicate inferred patterns of potential vegetation
and seasonal patterns of changes in regional atmospheric
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CO2. However, the models diverge significantly in their
predictions of ecosystem composition, structure, and func-
tioning under novel climates [Melillo et al., 1995; Cramer
et al., 2001; Friedlingstein et al., 2006]. In coupled simu-
lations, these differences feed back onto the atmosphere,
resulting in different climate trajectories. As a result, terres-
trial ecosystem responses to changes in climate and CO2 are
one of the largest sources of uncertainty for predicting future
changes in climate [Dufresne et al., 2002; Denman et al.,
2007]. The reasons for these differences in predicted ecosys-
tem response include: differences in the sensitivity of plants
to CO2 and N fertilization, uncertainty in ecosystem re-
sponses to moisture stress, differential responses of soil
mineralization to changing temperatures, and differences in
the treatments of spatial heterogeneity in ecosystem compo-
sition and structure.
[4] The above considerations imply that the conventional

approach to evaluating terrestrial biosphere models is insuf-
ficient for developing robust predictions of long-term eco-
system change [Moorcroft, 2006]. Accordingly, there have
been a number of recent efforts that have used ecosystem
measurements to constrain the behavior of terrestrial bio-
sphere models [Raupach et al., 2005; Trudinger et al., 2007].
Such techniques can be used to optimize model parameters
and obtain information on parameter uncertainties and cova-
riances. In particular, several studies have used assimilation
techniques to incorporate flux tower measurements into
models. Wang et al. [2001] used three weeks of eddy-flux
measurements to estimate photosynthesis and stomatal con-
ductance parameters of a simplified terrestrial biosphere
model designed to predict seasonal-to-interannual carbon
fluxes, but found that site-specific model parameters were
required tomatch the observations; similarly,Reichstein et al.
[2003] optimized an ecosystem model using CO2 and H2O
fluxes from Mediterranean ecosystems, but also found that
site- and season-dependent model parameters were required.
It appears that simplified biosphere and ecosystem models
may not be able to make reliable predictions for locations and
time periods other than those used in the model fitting.
[5] A further major challenge was illustrated by Braswell

et al. [2005], who sought to constrain a terrestrial biosphere
model against ten years of Harvard Forest CO2 flux measure-
ments. Unlike other commonly used models [Wang et al.,
2001; Reichstein et al., 2003; Knorr and Kattge, 2005;Wang

et al., 2007], their model explicitly tracked changes in
aboveground and soil carbon pools, thus potentially captur-
ing the dynamics of longer-term processes such as forest
succession that influence carbon fluxes over decadal to
centennial scales. While their predictions for daily to annual
net carbon fluxes improved significantly, their optimized
model gave rise to unrealistic long-term carbon dynamics
with excessive rates of carbon sequestration in vegetation and
excessive decomposition of soil carbon stocks.
[6] A characteristic feature of the models used in the above

studies is their use of a ‘canopy as big-leaf’ approximation, in
which ecosystem response at large scales is represented as
that of a single plant experiencing spatially averaged resource
conditions. Ecological research over the past three decades
[Botkin et al., 1972; Shugart and West, 1977; Huston et al.,
1988; Urban, 1990; Huston, 1992; Pacala et al., 1996] has
shown, however, that because of the combination of spatially
localized resource competition within plant canopies and the
nonlinear relationships between plant resource availability
and plant growth, mortality, and recruitment rates, know-
ing the dynamics of an average plant sitting in an average
environment does not provide sufficient information for
predicting the long-term dynamics of a heterogeneous plant
canopy [Levin et al., 1997]. These considerations call into
question the capability of models using a ‘big-leaf’ approx-
imation to reliably simulate long-term vegetation change.
[7] In this analysis, we adopt a different approach, using a

combination of eddy-flux measurements, satellite-derived
phenology observations, and forest inventory data obtained
over a two-year period at Harvard Forest (42.5�N, 72.1�W) to
constrain the dynamics of a structured terrestrial biosphere
model, the Ecosystem Demography model version 2 (ED2)
[Medvigy, 2006]. Instead of the conventional ‘big-leaf’
approximation, ED2 uses a system of partial differential
equations to approximate the behavior of a spatially distrib-
uted ensemble of individual plants [Hurtt et al., 1998;
Moorcroft et al., 2001; Moorcroft, 2003]. The equations
and parameter values of ED2 thus incorporate the nonlinear
impacts of fine-scale horizontal and vertical heterogeneity in
ecosystem structure on both the plant-level carbon and water
fluxes that underlie the canopy-scale exchange of CO2 and
H2O with the atmosphere and the plant-level growth and
mortality dynamics that underlie the long-term vegetation
dynamics of the ecosystem.
[8] In this initial study we focus exclusively on ED2’s

representation of temperate ecosystems. In this context, we
evaluate the constrained ED2 model’s ability to scale cor-
rectly in time and space, comparing the model’s predictions
to measurements of seasonal-to-decadal scale vegetation and
carbon dynamics at Harvard forest, seasonal-to-interannual
carbon dynamics at Howland Forest and Chibougamou
(Figure 1), and decadal vegetation dynamics in the north-
eastern United States and Quebec. The results show how the
explicit representation of fine-scale heterogeneity in canopy
structure enables ED2 to accurately capture regional-scale
variation in carbon fluxes and vegetation dynamics across
timescales of hours to decades.

2. Model Description

[9] The land surface in ED2 is subdivided into a series of
grid cells that experience meteorological forcing from either

Figure 1. Relative locations of Harvard Forest, Howland
Forest, and Chibougamou, Quebec. Harvard Forest, where
ED2 was optimized, is 390 km from Howland Forest and
770 km from Chibougamou.
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corresponding gridded data sets of near-surface conditions or
interactively from a coupled prognostic atmospheric model
[Medvigy, 2006]. The grid cells can vary in size, ranging from
the order of �102 km when performing global scale simu-
lations to the order of�10�1 kmwhen performing regional or
local scale simulations. Even at these smaller spatial scales,
ecosystems are extremely heterogeneous. Some of this het-
erogeneity is abiotic, arising from fine-scale variation in
physical attributes such as soil characteristics and topogra-
phy. However, significant biotic heterogeneity also develops
even in physically homogeneous environments as a result

of natural disturbance processes such as wind-throw and fire,
and anthropogenic disturbances such as forest harvesting,
land clearing, and land-abandonment.
[10] Like its predecessor ED, ED2 captures subgrid scale

biotic heterogeneity arising from disturbance events using a
system of size- and age-structured partial differential equa-
tions (PDEs) that closely approximate the ensemble mean
behavior of a corresponding individual-based stochastic gap
model [Moorcroft et al., 2001]. These PDEs are solved using
the method of characteristics, subdividing each grid cell into
a series of dynamic horizontal tiles, representing locations
within the grid cell that have experienced a similar distur-
bance history, and with an explicit dynamic vertical canopy
structure within each tile (Figure 2). Note that abiotic subgrid
scale heterogeneity is not currently represented in the model.

Figure 2. ED2model structure and processes: (a) Each grid
cell is subdivided into a series of tiles. The relative area of
each tile is determined by the proportion of canopy-gap sized
areas within the grid cell having a similar canopy structure as
a result of a common disturbance history. (b) ED2 computes
themultilayer canopy fluxes of water (W), internal energy (H)
and carbon (C) within each subgrid scale tile. (c) Summary of
the long-term vegetation dynamics within each tile arising
from the integration of short-term fluxes shown in Figure 2b.
Plant structural and living tissues grow at rates gs and ga,
respectively; canopy mortality occurs at rate m, and recruit-
ment occurs at rate f. Recruits are dispersed within and
between gaps. Rates gs, ga, m and f vary as a function of the
type x, size z and resource environment r of the plants.
Disturbances occur at rate lF calculated by the disturbance
submodel (canopy gap formation, fire and land use change).
Hydrological and decomposition submodels track the accom-
panying dynamics of water (W), carbon (C) and nitrogen (N)
within each tile.

Figure 3. (a) Visualization of the ecosystem composition
in the Harvard Forest flux tower footprint. Midsuccessional
hardwoods (red) dominate, but the footprint also contains
early successional hardwoods (green), pines (blue), late suc-
cessional conifers (magenta) and late successional hardwoods
(gray). (b) Distribution of basal area of the different plant
functional types across tree diameter classes.
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ED2 differs from the original ED model formulation by
incorporating the biophysical components necessary for
predicting short-term fluxes of CO2, moisture, and energy.
As a result, ED2 accounts for nonlinear interactions between
short-term and long-term processes, and can be either forced
directly with fast timescale meteorological data, or interac-
tively coupled with atmospheric models. Further details on
the ED2 model be found in Medvigy [2006] and in the
appendices of this paper.

3. Analysis

[11] Before optimizing the model, we performed an ini-
tial 11-year simulation from 1993 through 2003. Our param-
eterization was taken directly from the North American
parameterization of ED [Albani et al., 2006], whose param-
eterizations and parameter values are based on those found
in a number of other biosphere models [Foley et al., 1996;
Haxeltine and Prentice, 1996; Friend et al., 1997]. This
initial model thus reflected our prior quantitative understand-
ing of vegetation dynamics within the region.
[12] Themodel was forced withmeasurements of short and

longwave radiation, air temperature, precipitation, relative
humidity, wind speed, and pressure, which have been taken at
Harvard Forest since October 1991, except for longwave
radiation, which has only been measured since 2001. Occa-
sional gaps in the climatological data caused by power
failures, recalibration periods, and extreme precipitation
events were filled with data from the NCEP reanalysis data
set [Kalnay et al., 1996]. The NCEP reanalysis data set was
also used to prescribe the initial conditions for the soil mois-
ture and soil temperature profile. The depth of the mineral
soil and the soil textural class were prescribed from the 1 km2

STATSGO data set [Miller and White, 1998].
[13] Ecosystem composition was initialized from a forest

inventory conducted in the footprint of the Harvard Forest
eddy-flux tower. The forest inventory included censuses of
all trees larger than 10 cm diameter at breast height (DBH) in
forty plots of 10 m radius conducted in 1992, 1997, and
annually thereafter. One additional census of trees between

1 and 10 cm DBH was conducted in 2005. The composition
determined from the 1992 census and 2005 understory is
illustrated in Figure 3. As can be seen in the figure, hard-
woods comprise about �75% of the basal area, with the
dominant species being northern red oak (Quercus Rubra L.)
and red maple (Acer Rubrum L.).
[14] Because the canopy-gap scale distribution of times

since last disturbance within the tower footprint is not known,
horizontal heterogeneity in canopy composition was repre-
sented by grouping the inventoried plots into series of distinct
subgrid scale tiles based on their similarity in vertical struc-
ture and composition. The compositional profile within each
tile was represented explicitly, assigning all trees to their cor-
responding plant functional type (PFT) (Table 1).
[15] Results from this initial simulation, shown in Table 2,

indicate large RMS errors in the model’s predictions of
carbon fluxes and tree growth and mortality. For example,
the RMS error of the annual net ecosystem productivity or
NEP (3.1 tC ha�1 a�1) exceeds the observed mean NEP of
2.4 tC ha�1 a�1. Moreover, the model predicts an average
growth rate of 1.22 m2 ha�1 a�1, approximately four times
higher than the observed mean rate of 0.32 m2 ha�1 a�1.
Predicted mortality rates also have a large RMS error (1.5 m2

ha�1 a�1), mainly because of overestimation during the first
few years of the simulation.

3.1. Model Reformulation

[16] The above simulation motivated three adjustments to
the model formulation prior to optimization. First, the leaf
area index (LAI) of the tower footprint calculated using the
initial model’s allometric parameterization was 6.5, substan-
tially higher than the LAI of 4 measured in the tower
footprint. This discrepancy was corrected by modifying the
leaf area-DBH relationships for early and midsuccessional
hardwoods (Table 3) to match the empirical allometry esti-
mates of Ter-Mikaelian and Korzukhin [1997] and Villar and
Merino [2001]. These yield an LAI of 4.05 for the tower
footprint, closely matching the observed LAI.
[17] Second, the overprediction of NEPwas in part due to a

spuriously early start to the growing season (Figure 4a). This

Table 1. Summary of Plant Functional Types

Plant Functional Types Species

Early successional hardwood Betula Papyrifera, Betula Populifolia, Betula Lenta, Prunus spp.
Midsuccessional hardwood Quercus rubra, Quercus velutina, Acer rubrum, Fraxinus Americana, Sorbus microcarpa Pursh.
Late successional hardwood Acer saccharum, Fagus spp., Betula alleghaniensis
Northern pine Pinus resinosa, Pinus strobus
Late successional conifer Thuja occidentalis, Picea rubens, Picea glauca, Tsuga canadensis, Abies balsamea

Table 2. RMS Errors of ED2 Simulations of Harvard Forest

Data Set Units
RMS Error:
Initial Model

RMS Error:
Optimized Model, HET

RMS Error:
Optimized Model, AGG

RMS Error:
Optimized Model, HOM

Annual NEP tC ha�1 a�1 3.1 1.0 1.1 0.7
Monthly NEP tC ha�1 month�1 0.67 0.29 0.26 0.25
Daytime NEP tC ha�1 month�1 1.0 0.46 0.46 0.73
Nighttime NEP tC ha�1 month�1 1.1 0.26 0.18 0.44
Total growth m2 ha�1 a�1 0.86 0.09 0.13 0.10
Hardwood growth m2 ha�1 a�1 0.74 0.08 0.14 -
Conifer growth m2 ha�1 a�1 0.13 0.03 0.04 -
Total mortality m2 ha�1 a�1 1.5 0.35 0.37 0.16
Hardwood mortality m2 ha�1 a�1 1.3 0.13 0.13 -
Conifer mortality m2 ha�1 a�1 0.27 0.29 0.34 -
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occurred because the predictive, climate-driven phenology
model [Botta et al., 2000] predicts hardwood leaf-flush in
early May, while ground-based measurements of spring leaf
elongation indicate that hardwoods do not fully flush until
mid-June. This mis-match was eliminated by replacing the
Botta et al. [2000] phenology model with a prescribed
phenology model, which uses MODIS-derived estimates
for the beginning and end of spring leaf-flush and fall leaf-
drop [Zhang et al., 2003] to parameterize two logistic func-
tions describing the pattern of fractional leaf-out during the
year (Appendix B). The predictions of this regional prescribed
phenology model (Figure 4a) closely match ground-based
observations of leaf phenological status conducted at Harvard
Forest since 1992 (data available at http://harvardforest.
fas.harvard.edu/data/p00/hf003/hf003.html), with the addi-
tional advantage of yielding empirically constrained estimates
of phenological status for locations where ground-based
measurements are not available. In addition, the physiolog-
ical submodel was modified to capture the decline in leaf
photosynthetic capacity arising from leaf aging [Wilson et al.,
2000] that precedes the decline in leaf color at the end of the
growing season (equation (B4)).
[18] Third, the summertime plant respiration predicted by

the initial model formulation was nearly equal to the ob-
served nighttime total ecosystem (plant plus heterotrophic)
respiration (Figure 4b). This high summertime plant respira-
tion is primarily the result of high modeled levels of growth
respiration by hardwoods during the growing season. Con-
sistent with earlier terrestrial biosphere model formulations
[Foley et al., 1996; Friend et al., 1997; Haxeltine and
Prentice, 1996; Knorr, 2000], the initial model formulation
assumes that one third of the carbon assimilated by the
canopy is lost instantaneously as growth respiration. This
formulation derives primarily from measurements of herba-
ceous plants [Amthor, 1984, 2000; van Iersel, 2003], while
measurements on trees aremuch rarer (though seePaembonan
et al. [1992]).
[19] As seen in Figure 4b, this formulation is inconsistent

with canopy-scale measurements of carbon fluxes: during the
summer the modeled nighttime plant respiration alone is
larger in magnitude than the observed nighttime NEP, which
includes both plant and heterotrophic respiration. We ad-
dressed this problem by reformulating the hardwood growth
submodel, replacing hardwood growth respiration with a
maintenance loss term on the hardwood stored carbon pool

Table 3. Eco-Physiological, Life-History, and Allometric Parameters for the Plant Functional Typesa

Property
Early Successional

Hardwoods
Midsuccessional

Hardwoods
Late Successional

Hardwoods Northern Pines
Late Successional

Conifers
C3 Grasses
and Forbs

Leaf habit CD CD CD E E DD
SLA
(m2 (kg C)�1) 40 (30) 30 (24) 60 6 10 22
Density independent mortality rate (a�1) 0.006 0.004 0.004 0.003 0.001 0.07
Global dispersal (fraction) 1 0.33 0.07 0.77 0.001 1
Vm0 (mmol m�2 s�1) 18.3 (20.1) 15.6 (17.2) 6.3 (6.9) 15.6 (11.4) 6.3 (4.6) 18.3
l1 (kg C) 0.0047 (0.013) 0.024 (0.048) 0.017 0.024 0.045 0.08
l2 2.25 (1.75) 1.86 (1.46) 1.73 1.9 1.68 1.0
h1 (m) 22.68 25.2 23.4 27.1 22.8 0.48
h2 (cm

�1) -0.065 �0.05 �0.054 �0.039 �0.044 �0.75
s1 (kg C) 0.026 0.16 0.23 0.15 0.16 1 � 10�5

s2 2.96 2.46 2.25 2.24 2.15 1
aThe initial and optimized model used the same values except for the parameters SLA, Vm0, l1 and l2; for these, optimized model values are in parentheses.

The leaf habits include CD, cold deciduous; DD, drought deciduous; E, evergreen.

Figure 4. (a) Leaf phenology at Harvard Forest. The on-
the-ground observations of fractional leaf elongation (spring)
and leaf coloration (fall) are in black and the dashed red line is
the original climate-based phenology model of Botta et al.
[2000], in which the timing of leaf onset and offset occurs
instantaneously at dates determined by climatological
conditions. Black triangles indicate the MODIS dates [Zhang
et al., 2003] used in the prescribed phenologymodel in which
leaf onset and offset are determined by a continuous function
(red line). The optimized model yields significant improve-
ment at Harvard Forest and is easily generalizable to other
sites where on-the-ground phenology data are unavailable.
(b) Observed nighttime NEP and model predictions of plant
respiration (ra). In the initial model formulation, summertime
ra alone is larger in magnitude than the observed NEP.
In contrast, in the modified, optimized plant respiration
formulation (equation (C10)), summertime ra has a smaller
magnitude than the observed NEP.
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(Appendix C). This results in a more even distribution of
hardwood respiration throughout the year.

3.2. Model Optimization

3.2.1. Model Configurations
[20] We carried out three model optimizations, differing in

their representations of heterogeneity in vegetation compo-
sition and structure. In our standard optimization (‘HET’),
horizontal heterogeneity was represented in the model by
using the individual observation plots to initialize individual
subgrid-scale tiles in ED2. In contrast, in our aggregated
optimization (‘AGG’), all trees in the observed plots were
averaged together into a single ED2 tile. Note that this
averaging was applied to horizontal structure only, with the
result that both HET and AGG contained vertically hetero-
geneous canopies consisting of different plant functional
types. Our third optimization (‘HOM’) also grouped all trees
into a single ED2 tile; however, unlike AGG, all trees were
here assigned to the same plant functional type. Thus, in
HOM the vegetation properties are homogeneous both in the
horizontal and in the vertical, and is most similar to models
using a typical ‘ecosystem as big-leaf’ approximation.

3.2.2. Data Sets and Parameters
[21] We used ecosystem measurements from a two-year

period, November 1994-October 1996, to estimate 14 model
parameters. This period was selected because it has a rela-
tively complete flux-tower time-series that includes both a
hot and dry summer (1995) and a cool and damp summer
(1996). Simulations were initialized in January 1993 to min-
imize any transient dynamics arising from the initial soil
moisture and temperature conditions.
[22] Maximum likelihood was used to estimate model

parameters, uncertainties, and covariances from observational
data sets (Table 4): (i) annual net ecosystem production
(NEP); (ii) monthly NEP; (iii) hourly daytime NEP;
(iv) hourly nighttime NEP; (v) hourly evapotranspiration
(ET); (vi) basal area increment (BAI) of all trees in the tower
footprint; (vii) mortality of all trees in the tower footprint;
(viii) BAI of hardwood and coniferous trees in three
DBH size classes (10–20 cm, 20–30 cm and over 30 cm);
(ix) mortality of hardwood and coniferous trees in three
DBH size classes (10–20 cm, 20–30 cm and over 30 cm).
All data sets (i)–(ix) were used for the HET and AGG
optimizations, but the HOM optimization used only data sets
(i)–(vii) because it did not distinguish between plant func-
tional types. It has previously been shown that this approach
of using several data sets, including both flux tower and
forest inventory measurements, allows different model com-
ponents to be simultaneously optimized [Williams et al.,
2005]. Furthermore, disaggregating NEP into daytime (data
set iii) and nighttime (data set iv) components can be viewed
as a way of distinguishing respiration from the difference of
photosynthesis minus respiration, in effect allowing the
model’s predictions of both respiration and photosynthesis
components of the ecosystem’s net carbon fluxes to be
constrained [Mahadevan et al., 2008].
[23] Ten vegetation parameters, common tomany dynamic

vegetation models, were selected for the optimization of HET
and AGG (Table 5) on the basis that (i) previous estimates
have come from studies focusing on different spatial scales,

Table 4. Summary of Data Sets Used to Constrain ED2

Source Metric Aggregation
Number of
Observations

Tower
Net ecosystem productivity

(NEP; tC m�2 a�1)
Annual 2

Monthly 24
Hourly, daytime 6753
Hourly, nighttime 6783

Evapotranspiration (mm h�1) Hourly 9949
Forest Inventory

Growth (m2 ha�1) hardwood 6
coniferous 6
combined 2

Mortality (m2 ha�1) hardwood 6
coniferous 6
combined 2

Table 5. Summary of Optimized Parametersa

Parameter Symbol
Initial
Value

Optimized
Value and 2s

Uncertainty, HET

Optimized
Value and 2s

Uncertainty, AGG

Optimized
Value and 2s

Uncertainty, HOM
Reference

(Equation No.)

Stomatal Slope M 8 6.4 (1.3) 6 (6) >0 equation (B15)
Hardwood Vm0 multiplier Vmult,hw 1 1.1 (0.08) 0.71 (0.20) 0.4 (0.1) equation (B4)
Conifer Vm0 multiplier Vmult,co 1 0.73 (0.10) 0.76 (0.38) - equation (B4)
Photosynthesis temperature threshold (�C) TV,lo 5 4.7 (2.3) 5 (7) 14 (<18) equation (B4)
Fine root turnover rate (a�1) aroot 0.333 5.1 (0.5) 2.0 (0.9) 0.01 (1.3) equation (C6)
Allocation to fine roots relative to leaves, hardwoods qhw 1 1.1 (0.2) 1.4 (1.3) 2.4 (5.5) equation (C1)
Allocation to fine roots relative to leaves, conifers qco 1 0.35 (0.07) 0.8 (0.5) - equation (C1)
Water availability parameter (m2 a�1 (kgC root)�1) KW 160 150 (1200) 170 (92) 230 (>5) equation (B22)
Conifer growth respiration fraction rg,co 0.333 0.45 (0.06) 0.35 (0.17) - equation (C4)
Hardwood growth respiration fraction rg,hw 0.333 - - - equation (C4)
Hardwood storage respiration rate (a�1) astorage,hw - 0.62 (0.08) 0.49 (0.16) 0.5 (0.3) equation (C10)
Optimal temperature (�C) Topt 35 - - - equation (D1)
Temperature convexity parameter t1 0.19 - - - equation (D4)
Temperature convexity parameter t2 1.8 - - - equation (D4)
Optimal soil moisture (m3 m�3) Wopt 0.6 0.89 (0.04) 0.88 (0.13) 0.5 (0.5) equation (D3)
Soil moisture convexity parameter w1 5.0 5.1 (1.8) 6 (10) 13 (>0) equation (D3)
Soil moisture convexity parameter w2 5.6 4.5 (5.8) 6 (39) 7 (>0) equation (D3)
Temperature Q10 Q10 - 2.13 (0.09) 1.93 (0.39) 3.3 (>2.2) equation (D5)

aNote that the initial model included rg,hw, Topt, t1 and t2 but not astorage,hw or Q10; the optimized models included astorage,hw and Q10 but not rg,hw, Topt,
t1 or t2. Optimized parameter values are the maximum likelihood estimates (see section 3.2). For the HET optimization, the likelihood function was
highly asymmetric with respect to KW; its one-sided uncertainties were +1200, �28. The HET optimization had much smaller uncertainty intervals than
the AGG or HOM optimizations.
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and thus carrying the potential for biases [Rastetter et al.,
1992] and/or (ii) despite being commonly used in models,
they remain poorly constrained by direct measurements.
Three of these parameters exert a direct control on the fast
timescale fluxes of CO2 andH2O:M, the slope of the stomatal
conductance-photosynthesis relationship (equation (B15)),

and Vmult,hw and Vmult,co—multipliers used to scale the
intrinsic photosynthetic capacities (Vm0) of the deciduous
and coniferous plant functional types (equation (B3) and
Table 3). Three parameters affecting plant efficiency, conifer
growth respiration, rg (equation (C4)),the turnover rate of
stored carbohydrates in hardwoods,astorage (equation (C10)),
and the turnover rate of fine roots, aroot (equation (C6)), were
also optimized. The remaining optimized parameters that
directly impacted the vegetation included the temperature
below which photosynthesis begins to rapidly decline, TV,lo
(equation (B3)), the allocation of carbon to fine roots relative
to leaves in hardwoods and conifers, qhw and qco, respectively
(equation (C1)), and KW, which governs water availability
per unit root biomass (equations (B20) and (B21)). Because
the HOM optimization did not distinguish plant functional
types, it excluded the three parameters Vmult,co, rg, and qco.
[24] All of the parameters controlling the temperature

and moisture dependencies of decomposition were opti-
mized (Appendix D). In addition to the coefficients of the
6-parameter temperature and moisture dependency function
of the initial model formulation (equations (D3) and (D4)),
we also estimated the coefficients of a simpler 4-parameter

Figure 5. Dependence of heterotrophic respiration on
(a) temperature and (b) moisture. The dashed red curves
represent the initial 6-parameter model and the solid red
curves represent the optimized 4-parameter model (see
Appendix D).

Figure 6. Predicted and observed patterns of monthly Net
Ecosystem Productivity (NEP; tC ha�1 month�1) at the
Harvard flux tower. The black line represents the observa-
tions, the solid red line indicates the predictions from theHET
run, the blue line indicates the predictions from the AGG run,
and the dashed red line indicates the predictions from the
initial model. The magenta box indicates the observations
used to optimize the model.

Figure 7. Predicted and observed patterns of Net Ecosys-
tem Productivity (NEP) and rates of tree growth andmortality
at Harvard Forest. (a) Annual NEP in tC ha�1 a�1. The black
lines indicate the flux-tower measurements, the solid red
lines indicate the predictions of the HETmodel, the blue lines
indicate the predictions of the AGG model, and the dashed
red lines indicate the predictions from the initial model. Error
bars indicate the 2s error estimates for the observations and
the magenta boxes indicate the two years of observations
used to optimize the model. (b) Annual growth rates of trees
within the flux tower footprint shown in units of basal area
increment (m2 ha�1 a�1). (c) Annual rates of mortality shown
in units of basal area loss (m2 ha�1 a�1).
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temperature andmoisture dependency function (equations (D5)
and (D3)).
3.2.3. Maximum Likelihood Method
[25] The method of maximum likelihood [Edwards, 1972]

was used to determine the set of model parameters most
supported by the data sets and their uncertainties. Model
parameters were chosen so as to maximize the following log-
likelihood function, S, given by:

S ¼
XNdatasets

j¼1

1

Nj

XNj

i¼1

sij

 !
: ð1Þ

where Nj is the number of observations in data set j and sij
is contribution to the log-likelihood from element i of data
set j.
[26] With the exception of the hourly flux measurements,

all data sets were assumed to have normally distributed mea-
surement errors. In this case,

sij ¼ � 1

2

xpred;ij � xobs;ij

sij

� �2

: ð2Þ

Standard deviations of annual NEP were taken fromUrbanski
et al. [2007]. Each month was assumed to contribute an equal
amount to the annual uncertainty. The standard deviation for
the total BAI was taken from Barford et al. [2001], and the
standard deviation for the mortality was set to be of the order
of the measurement itself because ED2, as the first moment
approximation to a stochastic gap model, predicts the expec-
tation value of annual mortality, not themortality experienced
in individual years. The standard deviations associated with

the differential BAI and mortality data sets were calculated
such that each tree contributed equally to the standard devi-
ation of its parent data set.
[27] Consistent with the analysis of Hollinger and

Richardson [2005], the hourly measurements of daytime
and nighttime NEP and evapotranspiration were assumed
to have a double-exponential error distribution. In this case,

sij ¼
xpred;ij � xobs;ij
�� ��

sij

; ð3Þ

where sij is the uncertainty in element i of data set j, xobs,ij is
the measurement of element i in data set j and xpred,i is the
prediction of element i in data set j. Following the formu-
lations of Hollinger and Richardson [2005], the standard
deviations for the hourly NEP and evapotranspiration were
taken to be linear functions of the fluxes. Equation (1) was
maximized using a numerical nonlinear simulated annealing
maximization algorithm [Press et al., 1992].

4. Results

4.1. Likelihood Scores and Parameter Estimates

4.1.1. Heterogeneous Vegetation Initialization
[28] In going from the initial model to the reformulated ini-

tial model (section 3.1), the log-likelihood score (equation (1))
improved from �192 to �178 and the Akaike Information
Criterion (AIC) improved from 416 to 384. After parameter
optimization, the model attained a log-likelihood score of
�1.3 and an AIC of 31. To put the changes in log-likelihood
into perspective, a significant change in goodness-of-fit
would correspond to a change of only 2 log-likelihood units.

Figure 8. Annual basal area growth and mortality rates for hardwoods and conifers at Harvard Forest.
The magenta box indicates the two years of observations used to optimize the model parameters. The
black lines indicate the observations, the solid red lines indicate the predictions of the HET model, the
blue lines indicate the predictions of the AGG model, and the dashed red lines indicate the predictions
from the initial model. (a) Basal area increment (BAI) for hardwoods and (b) BAI for conifers. (c and d)
Mortality for hardwoods and conifers, respectively. 2s error bars are shown for the observations.
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These results indicate that the parameter optimization caused
most of the improvement in model performance, although the
direct impact of model reformulation was not insignificant.
[29] The maximum likelihood estimates and confidence

intervals for the optimized model parameters are given in
Table 5. The optimization increases the maximum photosyn-
thetic rate of hardwoods while decreasing that of conifers,
slightly lowers the temperature threshold for photosynthesis,
and reduces the slope of the relationship between stomatal
conductance and photosynthesis (M).
[30] There are also changes in patterns of respiration,

carbon allocation, and turnover. Conifer growth respiration
increases from 0.33 to 0.45, while the turnover rate of stored
carbon that replaced hardwood growth respiration in the
optimized model is estimated to be 0.63 a�1. The optimiza-
tion also indicates different patterns of carbon allocation in

hardwoods and conifers, with higher allocation to the below-
ground fine-root pools in hardwoods and lower belowground
allocation in conifers, and an order of magnitude increase in
the rate of fine-root turnover.
[31] Figure 5 shows the consequences of the decomposi-

tion-submodel parameter changes for the relative decompo-
sition rates of the soil pool. As the figure indicates, the
optimization reduces the temperature dependency of decom-
position and significantly changesWopt, the soil moisture level
at which the decomposition rate is maximal, increasing it
from 0.6 to 0.88. The 4-parameter decomposition formula-
tion (Figure 5) gave just as good a fit to the respiration
observations as an optimized version of the 6-parameter
decomposition formulation (not shown).
[32] The 95% (2s) confidence bounds indicate that most of

the optimized vegetation parameters are well-constrained;
excepting KW and w2, the average coefficient of variation is
18%. The lower confidence bound on KW is also reasonably
well-constrained, but the model’s predictions are largely
insensitive to it when it takes on values much greater than
its optimum (Table 5). The model exhibits little sensitivity to
w2 because Wopt is close to one.
[33] The covariances between the optimized parameters

are given in Appendix E. Because of several large covarian-
ces, no single parameter change is responsible for the
improved results of the optimized model. However, a prin-
cipal components analysis indicated that the likelihood
function varied most strongly in the direction of changing
net primary production (equal to photosynthesis minus plant
respiration), which controlled rates of tree growth.
4.1.2. Aggregated and Homogeneous
Vegetation Simulations
[34] Table 5 also lists the optimized parameters that

resulted when the canopy was represented in a more aggre-
gated manner. Except for two parameters, the parameters
from the AGG optimization were consistent with those from
the HET optimization. One difference was a smaller Vmult,hw,
which leads to reduced hardwood photosynthesis, though this
was balanced by a smaller aroot, which leads to reduced
carbon costs for both hardwoods and conifers. In addition, the
AGG estimate of qcowas over double the HETestimate. This
difference increases conifer photosynthesis in the AGG run
relative to the HET run by reducing water stress, but also
increases carbon costs by increasing allocation to the rapidly
turning-over pool of fine roots.
[35] The parameter uncertainties in the AGG optimization

are, however, generally larger than in the HET optimization,
illustrating the loss of information that accompanies homog-
enization of the plant canopy. This loss of information be-
comes even more acute with the HOM optimization, which,
despite generally consistent parameter estimates, has sub-
stantially larger uncertainty intervals than the HET and AGG
optimizations (Table 5). Only Vmult,hw has an uncertainty less
than 50% of its optimized value, while several parameters
have unbounded uncertainty intervals.

4.2. Harvard Forest Carbon Fluxes
and Vegetation Dynamics

[36] The two-year model optimization yielded greatly
improved predictions of net ecosystem productivity (NEP)
and vegetation dynamics over a full 10-year simulation
(Table 2) using the HET vegetation initialization. The

Figure 9. (a) Three-dimensional representation of the
forest composition in the flux-tower footprint, and (b) forest
composition in the forest inventory plots in Howland Forest
flux-tower footprint broken down by PFT and size class. In
contrast to Harvard, the forest composition at Howland is
dominated by late successional conifers (magenta), but also
contains midsuccessional hardwoods (red), pines (blue), and
early successional hardwoods (green).
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optimized model generally captures the observed season-
ality (Figure 6), and yields realistic annual values for NEP
(Figure 7a), although the model overpredicts NEP in the
summers of 1997–1998. Rates of tree growth and mortality
(Figures 7b and 7c) also correspond more closely with obser-
vations, except for overprediction of growth in 1998 and
overprediction of mortality in 1999 and 2000.
[37] Because of its ability to represent biotic ecosystem

heterogeneity, ED2 is by design able to distinguish between
hardwood and conifer vegetation dynamics (Figure 8). In
contrast to the initial model’s systematic overpredictions
hardwood and conifer growth, the optimized model yields
significantly improved growth rates throughout the 10-year
period (Table 2). Mortality rates of hardwoods also improve,
with the optimized model’s predictions lying within the data
uncertainty estimates in all years. However, the RMS error in
the optimized model’s predicted conifer mortality rates
becomes slightly higher than that of the initial model.
[38] The RMS errors from 10-year AGG and HOM runs

(parameterized according to their respective optimizations;
Table 5) are shown in Table 2. Model performance in these
cases is also much improved over the initial model, and is on
par with the HET simulation.

4.3. Regional Evaluation

4.3.1. Howland Forest
[39] We evaluated the HET and AGG ED2 model formu-

lations developed at Harvard Forest against independent
observations of carbon fluxes and vegetation dynamics at

the Howland Forest (45.1�N, 68.8�W) eddy-flux tower site
[Hollinger et al., 2004]. Howland is located 390 km northeast
of Harvard Forest (Figure 1), and has a markedly different
forest composition, with conifers comprising approximately
90% of the basal area (Figure 9). For a detailed site descrip-
tion, see Hollinger et al. [1999]. As in the Harvard Forest
simulations, ecosystem composition was directly initialized
from the composition measured in 48 forest inventory plots
located in the eddy-flux tower footprint; these plots remained
distinct in the HET simulation, but were averaged horizon-
tally in the AGG simulation. Soil carbon pools were set at
their observed levels, the phenology was prescribed as
described in section 3.1, and the observed meteorology was
used to force the model. A 7-year period (1996–2002) was
simulated, for which carbon flux and tree growth measure-
ments were available (no mortality measurements were
available at the Howland site). Note that no changes in model
parameters were made prior to the simulations.
[40] In the HET run, ED2 realistically simulates annual

NEP (Figure 10a), giving a bias of 0.25 tC ha�1 a�1,
corresponding to 14% of the observed mean NEP (1.74 tC
ha�1 a�1). Tree growth rates were systematically underesti-
mated, with a bias of �0.15 m2 ha�1 a�1, corresponding to
29% of the observed mean. The AGG simulation compared
less favorably to the observations (Figure 10). Annual
NEP was systematically underpredicted (a bias of �2.1 tC
ha�1 a�1 or �120%), as were rates of tree growth (bias of
�0.40 m2 ha�1 a�1 or �77%).

Figure 10. Patterns of annual net ecosystem productivity (NEP) and tree growth rates at Howland
Forest for the period 1996–2002. The black lines represent the observations, the solid red lines indicate
the predictions of the HET model, the blue lines indicate the predictions of the AGG model, and the
dashed red lines indicate the predictions from the initial model. Vertical bars indicate the 2s errors for the
measurements. (a) Annual net ecosystem productivity (NEP; tC ha�1 a�1). (b) Annual tree growth rates
within the Howland flux tower footprint in units of basal area increment (m2 ha�1 a�1). While the AGG
model strongly underpredicts NEP and tree growth, the HET model closely matches the observations.
(c and d) Growth rates of conifers and hardwoods, respectively.
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[41] The worsening of the tree growth rate bias resulted
from a larger underprediction of conifer growth rates
(Figure 10c), which more than offset an increase in hardwood
growth rates (Figure 10d). We also ran an additional simu-
lation that used the parameters from the HET model optimi-
zation, but aggregated the canopy in the same way as the
AGGmodel, in order to determine whether the parameters or
the representation heterogeneity was responsible for the
differences in predicted growth rates. The bias in this simu-
lation was �0.37 m2 ha�1 a�1, only a slight improvement
over the AGG simulation, indicating that the predicted growth
rates were different in HET and AGG primarily because of
their different representations of heterogeneity.
[42] Seasonal patterns of carbon fluxes at Howland are

shown in Figure 11. Throughout the simulated period, the
monthly NEP of the HET run (RMS error of 0.29 tC ha�1

a�1) is more realistic than that of the AGG run (RMS error of
0.37 tC ha�1 a�1; Figure 11a). The seasonal cycle of the HET
run also has the correct amplitude; however, its summertime
peak in NEP lags the observed peak by approximately 2–
3 months. Figures 11b and 11c show the breakdown of
monthly NEP into nighttime and daytime components. Both
the HET and AGG simulations underestimate respiration
during summer nights, although the HET run is closer to

the observations (Figure 11b). During daytime (Figure 11c),
both simulations underpredict summer NEP, although the
HET run’s prediction (0.79 tC ha�1 month�1) is much closer
to the observations (1.00 tC ha�1 month�1) than the AGG
run’s prediction (0.36 tC ha�1 month�1).
4.3.2. Chibougamou
[43] The Chibougamou, Quebec eddy-flux tower (49.3�N,

74.0�W) is located about 770 km north of Harvard Forest
(Figure 1) and is situated in a boreal ecosystem dominated by
black spruce (Picea mariana). Because it experiences sum-
mertimemean temperatures of only 16�C and typically has an
initial frost in early September, it has a shorter growing
season than either Harvard or Howland. To initialize ED2
simulations of Chibougamou, we used composition data
measured in 25 Quebec forest inventory plots located within
50 km of the tower site [Penner et al., 1997]. HET and AGG
runs were carried out for a 1-year period (2004) for which
CO2 flux measurements were available. Meteorological
forcing and phenology were prescribed as for Harvard and
Howland Forest sites.
[44] Figure 12 compares modeled monthly NEP with the

Chibougamou data. Unlike at the Harvard andHowland sites,
there is a marked decline NEP from June to July at Chibou-
gamou. Both HET and AGG simulations capture this dip;

Figure 11. Monthly carbon fluxes at Howland Forest. In all panels, the black line represents the data,
the solid red line indicates the predictions of the HET model, the blue line indicates the predictions of the
AGG model, and the dashed red line indicates the predictions of the initial model. 2s error bars are
shown for the observations. (a) Monthly net ecosystem productivity (NEP). (b and c) Breakdown of NEP
into nighttime and daytime components, respectively.
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however, the HET run gives a better match to the observed
annual NEP (AGG:�2.0 tC ha�1 a�1, observed: 0.1 tC ha�1

a�1, HET: �0.3 tC ha�1 a�1). In addition, in both the
observations and the HET run, the July dip in total NEP is
prominent in nighttime-only NEP (not shown), indicating
that ecosystem respiration is at least partly responsible for
this feature.
4.3.3. Northeastern United States and Quebec
[45] All regional simulations were done on the 0.25� �

0.25� grid shown in Figure 13. Soil textural class was
assigned at the level of the grid cell using the 1� resolution
USDA global soil database because higher resolution data
were unavailable for Quebec. Forest inventory data [Penner
et al., 1997; Frayer and Furnival, 1999], including over
27 000 plots, were used to initialize ecosystem composition.
The observed pattern of above ground biomass (AGB) is
shown in Figure 13a. As can be seen in the figure, the largest
amounts of AGB were in northern New York, southern New
England, and southern Quebec; the smallest were in western
New York (because of agriculture) and northern Quebec. We
then performed regional simulation the period 1982–1995
using both the HET and AGG model formulations. In both
cases, the first three years were used to spin up grasses, but
were then discarded from the analysis. Vegetation phenol-
ogy was driven with the average phenology obtained from
MODIS between 2001–2004 [Zhang et al., 2003], and
spatial patterns of forest harvesting (Figure 13b), derived
from forest inventory data, were applied as a disturbance
forcing to the model. The meteorological forcing was pre-
scribed from the ECMWF reanalysis [Uppala et al., 2005].
[46] Because most plots had been inventoried twice (once

in the mid-1980s, and again in the mid-1990s), it was
possible to calculate the mean rate of AGB accumulation
(defined as growth minus natural mortality minus harvest-
ing). The observed rate of AGB accumulation for these plots
is shown in Figure 14a. The pattern is highly heterogeneous:
New York had large accumulation rates, southern New
England had smaller accumulation rates, and Maine was
losing AGB. In Quebec, the accumulation rates were smaller

in magnitude, with the southernmost and northernmost areas
typically showing positive and negative accumulation rates,
respectively.
[47] Averaged over 1985–1995, the AGG run predicted

that the entire region, with the exception of northern Quebec,
was a strong carbon strong sink (Figure 14b). The simulated
AGB accumulation rates exceeded the observed rate every-
where except in western NY and PA. The comparison was

Figure 12. Monthly NEP at Chibougamou in 2004. The
black line represents the measurements, the solid red line
represents the HET model, the blue line represents the AGG
model, and the dashed red line represents the initial model.

Figure 13. (a) Aboveground biomass (AGB) derived from
the FIA and Quebec forest inventories aggregated at 0.25�
resolution. This region included over 27 000 plots. (b) Decadal-
mean harvesting rates of AGB for the forested plots. Maine,
southern Quebec, and the Adirondack region experienced
the largest harvesting rates of the simulated domain. Grid
cells with missing data are colored black.
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particularly bad in southern Quebec, where the overpredic-
tion was typically by about 1.5 tC ha a�1. In contrast, the
AGB accumulation rate predicted in the HET simulation
(Figure 14c) was much more realistic, with New England and
southern Quebec being a particularly good match. The HET
simulation nevertheless overpredicted accumulation rates in
northern Quebec, because of underprediction of mortality,
and underpredicted rates in Pennsylvania and western New
York, because of underprediction of growth. Overall, the
mean model bias was about +40% in AGG and +5% in HET.

5. Discussion

[48] This analysis shows how ED2 can be successfully
parameterized and tested against field-based measurements
of ecosystem performance, yielding a terrestrial biosphere
model capable of accurately predicting regional-scale varia-
tion in patterns of ecosystem carbon fluxes and vegetation
dynamics over timescales of hours to decades. Using just two
years of data at Harvard Forest to estimate a number of
important but poorly constrained model parameters dramat-
ically improves ED2’s predictions of carbon and vegetation
dynamics throughout the northeastern United States and
Quebec, despite marked regional variation in meteorological
forcing and ecosystem composition. These results contrast
strongly with the findings of earlier studies, in which model
parameter values were poorly constrained [Braswell et al.,
2005], or required time- and site-dependent parameters in
order to obtain realistic patterns of ecosystem dynamics
[Wang et al., 2001; Reichstein et al., 2003].
[49] The ability of ED2 to scale vegetation dynamics and

carbon fluxes accurately in both time and space is in part
attributable to its representation of biotic heterogeneity. In
contrast to traditional models using a ‘big-leaf’ approxima-
tion, which seek to capture canopy-scale ecosystem dynam-
ics bymodeling the dynamics of an average plant sitting in an
average environment, ED2 is structured so that it can explic-
itly track the dynamic, fine-scale horizontal and vertical
biotic heterogeneity in canopy structure present in ecosys-
tems even at the scale of flux-tower footprints.
[50] Consistent with results from several previous studies,

our results (Table 2 and Figures 6–8) show that ‘canopy-as-
big-leaf’ approximations that average over fine-scale biotic
heterogeneity [Knorr and Kattge, 2005; Wang et al., 2007]
can yield reasonable dynamics on timescales of 2–5 years
at the sites at which they have been optimized. However, as
shown in Figures 10, 11, 12, and 14, ‘canopy as big-leaf’
representations of ecosystems have a greatly reduced ability
to capture regional variation in fluxes and vegetation dynam-
ics. This arises because the homogenization of the plant
canopy that occurs in the ‘big-leaf’ representation results in
a necessary loss of information attenuating the connections

Figure 14. Net aboveground carbon accumulation
(growth minus natural mortality minus harvesting). (a)
Observations from the forest inventories. The uptake is
large especially in New York, while Maine had negative
uptake and Quebec had near zero but slightly negative
uptake. (b) Predictions of the AGG model, which generally
overestimates the observations. (c) Predictions of the HET
model, which nearly eliminates the overall positive bias of
the AGG model.
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between observations and the underlying parameters of the
biosphere model. As the results in Table 5 demonstrate, this
loss of information and the resulting increases in parameter
uncertainty occur as a result of spatial averaging of the plant
canopy, and becomes even more acute when plant canopies
are represented as single, dominant plant functional types.
[51] The incorporation of biotic heterogeneity in ecosys-

tem composition and structure facilitated constraining the
dynamics of both hardwoods and conifers at Harvard Forest.
Because the growth and mortality rates of all plant functional
types (PFTs) found within the tower footprint are predicted,
the parameterizations of different PFTs were able to be sim-
ultaneously constrained using the forest inventory measure-
ments. Optimization thus improved simulation of conifer
PFTs even though they comprise only about 20% of the basal
area at Harvard Forest. Importantly, we found that this
improved parameterization was not site-specific, but also
improved the model’s ability to realistically simulate fluxes
and dynamics at distant, conifer-dominated sites, including
Howland Forest and Chibougamou.
[52] In addition to providing a way to distinguish conifer

and hardwood dynamics, the forest inventory measurements
also played a key role in constraining our predictions of
canopy-scale carbon fluxes. While flux-tower measurements
yield estimates of canopy scale NEP and nighttime NEP
provides a measure of ecosystem respiration, these measure-
ments do not provide insight into the partitioning of ecosys-
tem respiration between its autotrophic and heterotrophic
components. As a result, when used alone, tower-flux mea-
surements do not constrain model predictions of net primary
productivity and heterotrophic respiration, allowing models
to have unrealistically high aboveground carbon accumula-
tion rates that are compensated for by excessive rates of
soil decomposition, as exemplified by the results of Braswell
et al. [2005] (section 1). In contrast, as shown here, using flux
tower observations in combination with forest inventory
measurements allows accurate partitioning of total
ecosystem respiration into its autotrophic and heterotrophic
components, making possible realistic predictions for
rates of aboveground carbon accumulation and belowground
decomposition.

[53] The marked improvement in model performance
following optimization at Harvard forest was associated with
significant changes in a number of model parameters away
from their initial, literature-prescribed values. The parameter
estimates indicate higher fine-root allocation in hardwoods
compared to conifers, a result that is intuitively pleasing
because, on a leaf-mass basis, demand for water is higher in
hardwoods than in conifers because of their higher specific
leaf areas. In addition, the model fitting produces a well-
constrained estimate for the rate of fine root turnover of
5.1 a�1, markedly faster than the 0.33 a�1 value prescribed in
the initial model formulation. Both of these rates of fine root
turnover lie within the range of literature estimates, which
indicate tremendous variation in fine root longevity, ranging
from days to years, depending on root diameter [Gaudinski
et al., 2000; Matamala et al., 2003], soil properties, and
climate. This, together with the strong covariances between
model parameters (Table 6), emphasizes the value of param-
eterizing and testing terrestrial biosphere model predictions
against suites of field-based observations, rather than simply
relying on hand-picked literature values to specify biosphere
model parameters.
[54] Achieving consistency between the dynamics of ED2

and the flux-tower and forest inventory measurements at
Harvard forest also required changes in some of the under-
lying submodels. Specifically, consistent with earlier terres-
trial biospheremodel formulations [Foley et al., 1996;Friend
et al., 1997; Haxeltine and Prentice, 1996; Knorr, 2000], the
initial model formulation assumed that one third of the
carbon assimilated by the canopy is lost as growth respira-
tion. This formulation derives from measurements of herba-
ceous plants [Amthor, 1984; Amthor, 2000; van Iersel, 2003];
however, as shown here, it is inconsistent with canopy-scale
measurements of forest carbon fluxes because simulated
growth respiration alone exceeds the observed rates of total
ecosystem respiration at nighttime during the summer. In
the alternative formulation implemented in the optimized
ED2 model, hardwood growth respiration is replaced by a
maintenance loss term on the storage pool, and structural
tissue growth occurs at the beginning of the growing season
using the carbon from the storage pool. This formulation

Table 6. Covariance Matrix of the Optimized Parametersa

M Vmult,hw Vmult,co TV,lo aroot qhw qco KW rg,co astorage,hw Wopt w1 w2 Q10

M 1 �0.85 �0.93 1.0 1.3 �12 0.35 0.073 0.72 0.52 �13 �1.4 �0.37 �0.35
Vmult,hw 1 �1.4 0.39 0.61 0.51 0.23 0.19 0.44 0.85 0.33 �1.2 �1.0 �1.7
Vmult,co 1 0.71 1.5 �0.56 1.1 0.067 0.55 �1.9 1.5 �1.6 6.5 �1.2
TV,lo 1 �0.39 4.4 �0.78 �0.13 �0.65 �0.73 �0.67 0.73 �0.36 0.47
aroot 1 �0.91 �0.29 �0.064 �0.37 0.24 �48 1.2 0.44 �7.0
qhw 1 0.89 �0.077 0.63 �0.34 �0.26 3.0 0.44 0.70
qco 1 �0.050 �0.81 �0.41 �39 �0.47 �0.65 0.89
KW 1 �0.089 �0.15 �0.14 �0.13 0.13 0.15
rg,co 1 �2.1 0.75 12 0.63 0.88
astorage,hw 1 �8.3 0.65 0.34 0.57
Wopt 1 2.1 0.19 �0.43
w1 1 �0.20 �0.52
w2 1 �0.21
Q10 1

aThe stomatal slope is denoted M (equation (B15)), the fine root turnover rate is denoted aroot (equation (C6)), the temperature at which photosynthesis
begins to rapidly decline is denoted TV,lo (equation (B3)), the hardwood Vm0 multiplier is denoted Vmult,hw (equation (B3)), the allocation to fine roots
relative to leaves for hardwoods is denoted qhw (equation (C1)), the hardwood storage respiration rate is denoted astorage,hw (equation (C10)), the conifer
Vm0 multiplier is denoted Vmult,co (equation (B3)), the allocation to fine roots relative to leaves for conifers is denoted qco (equation (C1)) and the conifer
growth respiration fraction is denoted rg,co (equation (C4)). The optimal soil water is denoted Wopt (equation (D3)), w1 and w2 (equation (D3)) are
parameters determining the response of the decomposition model to low and high soil moisture levels, respectively, and Q10 determines the response of
decomposition to soil temperature (equation (D5)).
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substantially decreases the seasonality of hardwood respi-
ration consistent with the flux tower observations, and
results in hardwood growth that is strongly seasonal in
accordance with dendrometer measurements of hardwood
growth (S. C. Wofsy et al., unpublished manuscript).
[55] The calculated uncertainties of the optimized param-

eters (Tables 5) do not explicitly include impacts of potential
errors in the submodels of ED2 not directly constrained in
the the optimization (e.g., the canopy and soil biophysics
schemes [Walko et al., 2000]). In particular, errors in pre-
dicted soil moisture may be important for capturing certain
aspects of variability not currently captured by the optimized
model formulation shown here.
[56] Parameter uncertainty was significantly affected by

the choice of data sets used to optimize the model. In contrast
to previous studies whose onlymetric of NEPwas hourly flux
data, we used hourly, monthly and annual values of NEP to
constrain ED2. Although the importance of using multiple
data sets has already been pointed out [Williams et al., 2005],
the independent constraints provided by aggregating eddy
flux data in this way has not, to our knowledge, been
previously exploited. We found that using these integrals of
NEP doubled the number of parameters that we were able
to estimate with coefficients of variation less than 25%
(Appendix E). Among these were the parameters of the
decomposition model, suggesting that adding the monthly
and yearly timescales to the optimization increases the sensi-
tivity totheseasonallyvaryingfluxesintothesoilcarbonpools.
[57] Our analysis highlights several areas for further im-

provement. First, the climate-based phenology model of
Botta et al. [2000] used in the initial model formulation
significantly overestimated the length of the growing season,
biasing seasonal and annual estimates of canopy carbon
fluxes. We eliminated this source of error by switching to a
satellite-derived prescribed phenology model; however, in
order to predict how future changes in climate will alter
terrestrial vegetation dynamics and carbon fluxes, there is an
urgent need to develop more accurate climate-based phenol-
ogy models.
[58] Second, while the optimized model accurately cap-

tured the seasonal pattern of NEP at Harvard Forest, this was
not the case at Howland, where themodel’s summertime peak
in nighttime NEP preceded the observations by 2–3 months
(Figure 11c). One potential explanation for this is that either
higher lignin or lower nitrogen content of the predominantly
conifer litter found at Howland, compared to the predomi-
nantly hardwood litter found at Harvard, slows the onset of
heterotrophic respiration at the Howland site. Alternatively,
there may be differences in the environmental sensitivities of
decomposition at the two sites, arising from either differences
in physiological performance or differences in belowground
community composition that are not captured by ED2’s
simple single-layer ‘black-box’ decomposition model.
[59] A third area for improvement is suggested by the

model’s overprediction of AGB accumulation in northern
Quebec (Figure 14), which was due to underprediction of
mortality. The model’s density-independent mortality rates
were calibrated solely from the FIA [Albani et al., 2006], and
thus did not include any Quebec data. Incorporating frost- or
insect-induced mortality in accord with the Quebec observa-
tions would likely improve the match [Kurz and Apps, 1999].
Finally, several factors may have contributed to the under-

prediction of AGB accumulation and growth rates in PA and
NY, although absence of direct observationsmakes it difficult
to evaluate these hypotheses in detail. These include: (i) the
impacts of nitrogen deposition, which is relatively large in PA
and NY [Goodale et al., 2002] but not accounted for in ED2;
(ii) dependence of leaf nitrogen on relative shading, even for
trees of the same PFT [Reich et al., 1998;Wright et al., 2004];
and (iii) a possible need to account for three-dimensional
effects in ED2’s radiative transfer scheme.
[60] The explicit parameter estimation and model testing

conducted in this study differ from the conventional approach
to evaluating terrestrial biosphere models in which models
are evaluated by their ability to reproduce broad-scale pat-
terns of vegetation and regional-scale variation in atmospheric
CO2. The ability to test the predictions of structured terrestrial
biosphere models such as ED2 against field-based measure-
ments of canopy fluxes and vegetation dynamics promises
to provide much-needed empirical constraints on predictions
of how changes in climate and atmospheric CO2 will alter
terrestrial ecosystems, and how these changes will feedback
onto the atmosphere over the coming decades.

Appendix A: ED2 Model Overview

[61] The principal differences between ED2 and the orig-
inal ED model formulation are as follows: (i) the single layer
soil model (with prescribed temperature) of ED has been
replaced in ED2 with a generalized version of the Land
Ecosystem Atmosphere Feedback (LEAF-2) biophysical
scheme [Walko et al., 2000], which includes a multilayer
soil model, the ability to represent liquid or frozen surface
water in and above the soil, and a multilayer vegetation
canopy; (ii) the computation of shortwave radiative transfer
in the plant canopy was changed from an off-line, single-
band, full-spectrum computation using Beer’s law to an on-
line, 2-band, direct-diffuse computation using the two-stream
approximation; (iii) longwave radiative transfer in the plant
canopy, omitted in the original ED model, was computed
with the two-stream approximation in ED2; (iv) photosyn-
thesis and evapotranspiration, done off-line in the original
ED, are computed on-line in ED2 (Appendix B); (v) aero-
dynamic resistance, omitted in the original ED calculations of
photosynthesis and evapotranspiration, is included in ED2.
Thus, the resulting ED2model formally scales fast time-scale
ecosystem responses to atmospheric forcing into realistic
long-term changes in ecosystem composition, structure, and
function, and consistently applies the resulting feedbacks to
the atmosphere.

Appendix B: Leaf Physiology

[62] ED2 uses the model of leaf-level carbon assimilation
and water fluxes developed by Farquhar, Ball, Berry and
others [Farquhar et al., 1980; von Caemmerer and Farquhar,
1981; Farquhar and Sharkey, 1982; Ball et al., 1986]. The
formulation closely follows the original ED model formula-
tion [Moorcroft et al., 2001]; it is described here because
several parameters in this scheme were optimized.
[63] The leaf-level carbon demand of C3 plants is deter-

mined by the minimum of its light-limited rate (Je) and its
Rubisco-limited rate (Jc). Colimitation is not considered as
this has little effect on canopy photosynthesis because, at any
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given time, the fraction of leaves that are colimited is small.
Thus, the optimal leaf-level demand of photosynthesis is
given by

Ao ¼ min Je; Jcð Þ � gVm Tvð Þopen stomata ðB1Þ

Ac ¼ �gVm Tvð Þ closed stomata ðB2Þ

where the term �gVm represents leaf respiration. Vm(Tv)
denotes here the maximum capacity of Rubisco to perform
the carboxylase function at a given temperature Tv and g is a
proportionality constant [Reich et al., 1998]. The temperature
dependence of Vm(Tv) is exponential, but a phenomenologi-
cal cutoff is applied at very low and very high temperatures.
At low temperatures, this cutoff is governed by the parameter
TV,lo. Thus we have, for the unoptimized model,

Vm Tvð Þ ¼ Vm0;i exp 3000 1=288:15� 1=Tvð Þ
1þ exp 0:4 TV ;lo � Tv

� �� �
1þ exp 0:4 Tv � 318:15ð Þð Þ

:

ðB3Þ

[64] The optimized model ramps down photosynthesis in
the fall [Wilson et al., 2000] through a modification of Vm,

Vm Tvð Þ ¼ Vm0;i

� exp 3000 1=288:15� 1=Tvð Þ
1þ exp 0:4 TV ;lo � Tv

� �� �
1þ exp 0:4 Tv � 318:15ð Þð Þ

� e 1:09tð Þ
e tð Þ ;

ðB4Þ

where t is the day of the year and e(t) is defined by

e tð Þ ¼ 1

1þ t=t0ð Þb
; ðB5Þ

where t0 is the mean, b is a slope, and t is the Julian day. The
parameters t0 and b were obtained from fits to four key dates
derived from MODIS phenology observations [Zhang et al.,
2003]; see section 3.1.
[65] The light-limited rate of photosynthesis is given by:

Je ¼ aPARvi

Cinter � G
Cinter þ 2G

; ðB6Þ

where a is the quantum efficiency, PARv is the PAR ab-
sorbed by the vegetation layer, Cinter is the intercellular CO2

concentration, and G is the compensation point for gross
photosynthesis given by:

G ¼ 21:2 ppmvð Þ exp 5000 1=288:15� 1=Tv½ 
ð Þ: ðB7Þ

[66] The Rubisco-limited CO2 demand is

Jc ¼
Vm Tvð Þ Cinter � Gð Þ
Cinter þ K1 1þ K2ð Þ ; ðB8Þ

where K1 is the Michaelis-Menten coefficient for CO2 and
K2 is proportional to the Michaelis-Menten coefficient for
O2. These are given by:

K1 ¼ 150 ppmv exp 6000 1=288:15� 1=Tvð Þð Þ
K2 ¼ 0:836 exp �1400 1=288:15� 1=Tvð Þð Þ: ðB9Þ

[67] When a plant is actively photosynthesizing, Cinterwill
generally be much less than the CO2 concentration of the
canopy air space, here denotedcCAS, because of aerodynamic
and stomatal resistance. The aerodynamic resistance is main-
ly controlled by environmental factors like wind speed and
leaf shape. The total boundary layer conductance for H2O
exchange (gbH) is the sum of the conductance from free (gbHf)
and from forced (gbHw) convection. Following Monteith
[1973] and Leuning et al. [1995], we represent these conduc-
tances as

gbHw ¼ 0:003 s1:5 m�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U=wleaf

p
gbHf ¼ 0:5 s2 K0:25 m2:75

� �
DHGr

0:25w�1
leaf :

ðB10Þ

Here, U is the wind speed and declines exponentially with
the cumulative LAI (LAIcumul) according to

U ¼ Utop exp �0:5LAIcumulð Þ; ðB11Þ

where Gr is the Grashof number,

Gr ¼ 1:6� 108jTv � TCAS jw3
leaf ; ðB12Þ

and wleaf is the leaf width and DH is the molecular diffu-
sivity for heat. For water vapor, the boundary layer con-
ductance is given by gbw = 1.075gbH. Water and CO2

concentrations within the within the leaf boundary layer (eS
and CS, respectively) are then given by

eS ¼ ea þ
Yo

gbw
ðB13Þ

and

CS ¼ cCAS �
Ao

1:4gbw
; ðB14Þ

where ea is the molar mixing ratio of water in the canopy air
space (CAS).
[68] Stomatal resistance is actively regulated by the plant

to control water losses. Leuning [1995] has shown that the
connection between the stomatal conductance for water (gsw)
and the CO2 assimilation rate can be expressed as

gsw ¼
MAo

Cs�Gð Þ 1þDs
D0

� �þ b for open stomata;

b for closed stomata:

8<
: ðB15Þ

Here, M and D0 are empirical constants and b is the
cuticular conductance. Ds represents the water vapor deficit
(Ds = eL � eS) and eL is the intercellular water vapor
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concentration, assumed to be at saturation. First-order
diffusion equations are also used to relate intercellular and
boundary layer mixing ratios for H2O and CO2,

eL ¼ eS þ
Yo

gsw
ðB16Þ

Cinter ¼ CS �
Ao

1:6gsw
: ðB17Þ

[69] In contrast to terrestrial ecosystem models such as the
original ED model that require an energy balance equation to
determine the leaf temperature Tv, in ED2 Tv is a prognostic
variable calculated by surface energy balance submodel
[Walko et al., 2000]. Because gbw, cCAS, ea and eL are not
coupled to the rest of the equations they can be directly
determined. Then, given the known foliar temperature Tv,
we are left with 6 equations in the case of open stomata
(equations (B2), (B13)–(B17)) that are solved for the 6
unknowns: gsw, CS, es, Cinter, Ao and Yo. In ED2, the
equations are reduced to a single polynomial that is solved
for the above quantities [Medvigy, 2006].
[70] After solving equations (B2) and (B13)–(B17) under

the condition of open stomata, the equations are resolved
under the condition of closed stomata by setting the stomatal
conductance equal to the cuticular conductance b (equation
(B15)), yielding the values for the closed-stomata leaf-level
CO2 and H2O fluxes, Ac and Yc.
[71] Water limitation: The instantaneous rates of photo-

synthesis Anet and evapotranspiration of plants Ynet rates are
influenced bywater availability.Anet andYnet are taken to be a
linear combinations of their rates under conditions of open
(Ao, Yo) and closed (Ac, Yc) stomata, the weighting of being
determined by a plant’s water availability relative to its over-
all water demand:

Anet ¼ fo;wAo þ 1� fo;w
� �

Ac; ðB18Þ

Ynet ¼ fo;wYo þ 1� fo;w
� �

Yc; ðB19Þ

where the weighting for open stomata ( fo,w) is given by:

fo;w ¼ 1

1þ Demand
Supply

: ðB20Þ

The plant’s water demand is given by:

Demand ¼ Yo SLA Bleaf : ðB21Þ

where SLA is the plant’s specific leaf area and Bleaf is the
plant’s the leaf biomass. The plant’s water availability is
calculated as:

Supply ¼ KW Wavail;tot Broot; ðB22Þ

where the total amount of water accessible to the vegetation
layer is Wavail,tot, the vegetation layer’s total C in fine roots
is Broot, and KW is a constant.

Appendix C: Allocation

[72] Allocation in the optimized ED2 model differs from
the original ED model [Moorcroft et al., 2001] and is de-
scribed here. The active biomass pool (Ba) of each vegetation
layer consists of leaves (Bleaf), fine roots (Broot), sapwood
(Bsw) and a stored leaf pool (Bslc). These are obtained through
the allocation relationships

Bleaf ¼ e tð ÞBa

1þ qþ qswh

Broot ¼ qBa

1þ qþ qswh

Bsw ¼ qswhBa

1þ qþ qswh

Bslc ¼ 1� e tð Þð ÞBa

1þ qþ qswh

ðC1Þ

Here, e(t) is a factor ranging between 0 and 1 that accounted
for phenological status of the plant (see equation (B5)). The
allocation to fine roots relative to leaves, q, is PFT-dependent;
qco (conifers) and qhw (hardwoods) were determined by the
optimization.

C1. Active Biomass Pool

[73] The active biomass pool (Ba) of each vegetation layer
evolves according to:

dBa

dt
¼ q1 GPP� Rleaf � Rroot � Rgrowth � Flitter

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
photosynthesis;respiration;litter flux

þ q2t B*a � Ba

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
transfer from storage

� Rslc|{z}
respiration of stored leaf carbon

:
ðC2Þ

The parameter q1 is either equal to 0 or 1; it is 1 if either
the sum of the contributions from photosynthesis (GPP),
respiration (Rleaf, Rroot, Rgrowth) and litter (Flitter) is less than
zero (GPP � Rleaf � Rroot �Rstorage � Flitter < 0), or if the
vegetation layer is off-allometry with Ba < Ba*. Ba* is
maximum allowable value of Ba and is calculated based on
the vegetation layer’s PFT and DBH through

B*a ¼ 1þ qr þ hqswð Þl1 min
DBH

cm
;
DBH0

cm

� �l2

; ðC3Þ

where h is the height of the vegetation layer and qr, qsw, l1,
DBH0 and l2 are PFT-dependent constants (Table 3).
[74] Growth respiration (Rgrowth) was updated daily and

based on the previous day’s carbon balance. It is given by:

Rgrowth ¼ max 0; rg

Z
previous day

dt GPP� Rleaf � Rroot

� �� �
:

ðC4Þ

where rg is a PFT-dependent constant.
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[75] The litter flux (Flitter) receives inputs from the turn-
over of fine roots (Troot), turnover of leaves from needleleaf
trees (Tleaf) and hardwoods’ dropping of leaves (Tdrop):

Flitter;i ¼ Tdrop þ Tleaf þ Troot: ðC5Þ

Following Moorcroft et al. [2001], a plant’s fine root turn-
over rate is given by

Troot ¼ arootBroot 1þ exp 0:4 278:15� TgNg

� �h i�1

; ðC6Þ

where aroot is the intrinsic rate of fine root turnover.
[76] The turnover rate of the leaves of evergreen trees

(Tleaf) is

Tleaf ¼ aleaf Bleaf ðC7Þ

where aleaf is a PFT-dependent constant and Bleaf is the size
of the leaf biomass pool (Appendix C). As deciduous trees
lose their leaves at the end of the growing season (section 3.1),
a fraction Lfrac of the leaf biomass is incorporated into the
storage pool (Bstorage; see below) and the remainder, Tdrop,
contributes to the litter flux (Flitter; equation (C5)).
[77] The second term in equation (C2) represents transfer

from storage (Bstorage) to Ba. q2 is a parameter equal to either
0 or 1, and is 1 only if both the vegetation layer is flushing
(de(t)/dt > 0; equation (B5)) and off-allometry (Ba <Ba*). t is
a constant equal to 1 d�1.
[78] Finally, the stored leaf pool turns over at a rate given

by astorage; thus,

Rslc ¼ astorageBslc; ðC8Þ

where astorage is a constant (Table 5) and Bslc is the size of
the stored leaf pool.

C2. Storage Pool

[79] The storage biomass pool (Bstorage) of each vegetation
layer evolves according to:

dBstorage

dt
¼ 1� q1ð Þ GPP� Rleaf � Rroot � Rgrowth � Flitter

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
photosynthesis;respiration;litter flux

� q2t B*a � Ba

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
transfer to active pool

� Rstorage|fflfflffl{zfflfflffl}
respiration of storage pool

þ Lfrac

1� Lfrac
Tdrop|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

transfer at leaf drop

:

ðC9Þ

Storage respiration (Rstorage) depends on the current size
of the storage biomass (Bstorage) and is calculated daily
according to

Rstorage ¼ astorage Bstorage ðC10Þ

where astorage is a constant (Table 5). In contrast to growth
respiration, which is only operative during the growing
season when daily carbon uptake is positive, storage res-
piration occurs throughout the year provided Bstorage is
nonzero. In the initial model formulation hardwood rg =
0.333 and hardwood astorage is zero, while in the

optimized model formulation hardwood rg is zero and
hardwood astorage > 0.

Appendix D: Soil Decomposition Model

[80] Except for the differences noted in this section,
decomposition in ED2 exactly follows the original EDmodel
[Moorcroft et al., 2001]. The overall rate of decomposition is
proportional to a phenomenological factor (A; 0–1) account-
ing for the temperature and moisture dependence of hetero-
trophic respiration. Two formulations for A are included in
the model, the first of which exactly followsMoorcroft et al.
[2001]. Defining

xT ¼ Tresp;max � T
� �

Tresp;max � Tresp;opt
� ��1

; ðD1Þ

xW ¼ WW�1
sat ðD2Þ

and

f xWð Þ ¼ exp xW �Wopt

� �
w1

� �
xW < Wopt

exp Wopt � xW
� �

w2

� �
xW > Wopt

�
; ðD3Þ

A is given by

A ¼ xtshrT exp tshrt
�1
shl 1� xtshlT

� �� �
f xWð Þ: ðD4Þ

[81] The second and simpler way uses the same formula-
tion for f(xW) but replaces the temperature dependence of
equation (D4) with a simple exponential,

f xTð Þ ¼ exp
logQ10

10
T � 318:15ð Þ

� �
: ðD5Þ

Appendix E: Model Fitting Procedure

E1. Uncertainty Analysis

[82] The shape of the log-likelihood function in the neigh-
borhood of the maximum contains information pertaining
to parameter uncertainty and covariances between model
parameters. When there are many parameters being opti-
mized it is impossible to consider the log-likelihood function
(equation (1)) comprehensively, but it can be shown that it is
valid to consider projections of the log-likelihood function
provided it is nearly quadratic near the maximum [Edwards,
1972]. Denote the vector of evaluates by q̂ and then consider
a different vector, q, for which all but one of the components
are the same as those of q̂. For a fixed m, the hyper-ellipsoid
given by

m ¼ S q̂
� �

� S qð Þ ðE1Þ

is defined as the m-unit log-likelihood region. We can as-
sociate some meaning with m by Taylor-expanding the log-
likelihood around q̂ and dropping all terms beyond the
quadratic. In the one-dimensional case,

S2 qð Þ ¼ S q̂
� �

� 1

2

q� q̂
wq

 !2

; ðE2Þ
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where S2(q) now denotes the quadratic approximation to
S(q). The parameter wq, known as the span, is simply related
to the second derivative of S(q) about the maximum and
plays the role of the standard deviation. When q = q̂ +2 wq,
m = 2; this is the value of q used for the estimate of pa-
rameter uncertainty (Table 5).
[83] The case of multiple parameters is similar. The Taylor

expansion is written

S2 qð Þ ¼ S q̂
� �

� 1

2
q� q̂
� �0

B q� q̂
� �

; ðE3Þ

where q and q̂ are now vectors of parameters and B is the
matrix of second-order partial derivatives of S(q) evaluated
at q̂. The inverse of B is known as the formation matrix. The
diagonal elements are the squared spans of the correspond-
ing parameters, and the off-diagonal elements are known as
the coformations. Denoting the spans of parameters i and
j to be wi and wj, and their coformation to be Cij, a non-
dimensional measure of covariance is Cij/(wiwj).
[84] These covariances between parameter values are given

in Table 6. Of the 91 independent covariances, 65 have
magnitudes less than 1. This indicates that the projection of
the support function onto the corresponding two-dimensional
parameter space is parabolic, and that the second-order
Taylor expansion of the support function about the optimal
parameters is appropriate. Covariances having magnitudes
greater than 1 result when the two-dimensional projection
of the support function is hyperbolic; third or higher order
Taylor expansions of the support function are necessary to
assess correlations between such pairs of parameters.
[85] The maximum photosynthetic rate for hardwoods

(Vmult,hw) is correlated with the turnover rate of stored car-
bon (astorage,hw) and is anticorrelated with the stomatal
conductance-photosynthesis parameter M. The maximum
photosynthetic rate for conifers (Vmult,co) is also anticorre-
lated with M, and also correlated with photosynthesis tem-
perature threshold TV,lo. The turnover rate of fine roots (aroot)
is anticorrelated with the hardwood fine root to leaf ratio

(qhw), while qhw is correlated with qco and anticorrelated with
Q10. qco is anticorrelated with the conifer growth respiration
fraction rg,co and TV,lo and correlated with Q10. ahw,storage is
correlated with TV,lo. rg,co is correlated with the optimum soil
moisture for decomposition Wopt, Q10 and M. Wopt is anti-
correlated with TV,lo. TV,lo with correlated with w1, the shape
parameter for the moisture dependence of heterotrophic
respiration. Other parameter pairs were either more weakly
covarying or resulted in hyperbolic fits to the support function.
[86] To address higher-order covariances among the opti-

mized parameters we also performed a principal components
analysis [Draper and Smith, 1981]. The eigenvector corre-
sponding to the highest eigenvalue was interpretable, and
indicated that the goodness of fit function varied most
strongly in the direction of changing net primary productivity.

E2. Selection of Eddy Flux Tower Data Sets

[87] Previous analyses using eddy flux tower data
employed only hourly time-scale data in constructing their
likelihood functions. However, it is possible to do reasonably
well in predicting hourly fluxes but to nevertheless have a
systematic error that leads to erroneous monthly and yearly
fluxes. This is illustrated in Table E1, which shows the pa-
rameters and uncertainties resulting from 3 different ED2
optimizations. Represented are the study described in this
manuscript that used hourly, monthly and yearly fluxes; a
second optimization that did not include monthly fluxes but
had hourly and yearly fluxes; and a third optimization that
included hourly fluxes but neither monthly nor yearly fluxes.
All optimizations included the forest inventory data sets and
the hourly evapotranspiration data.
[88] Parameter uncertainty was substantially decreased

when yearly fluxes were included in the optimization. While
the optimization using only hourly flux data yielded only 6 of
14 parameters with coefficients of variation less than 25%,
the optimization that also included yearly fluxes had 10 such
parameters. These 10 parameters included all of the 6 from
the hourly flux-only optimization, plus qhw,Wopt,w1 andQ10.
Thus, the heterotrophic respiration model particularly

Table E1. Parameter Values and Uncertainties Resulting From Three Different Optimizationsa

Parameter Initial Value

Optimized Value and 2s Uncertainty

Hourly Only Hourly + Yearly Hourly + Yearly + Monthly

Stomatal Slope 8 11 (80) 8.2 (5.0) 6.4 (1.3)
Hardwood Vm0 multiplier 1 0.90 (0.2) 1.3 (0.09) 1.1 (0.08)
Conifer Vm0 multiplier 1 0.54 (0.10) 0.58 (0.09) 0.73 (0.1)
Photosynthesis temperature threshold (�C) 5 3.8 (3.8) 4.6 (2.7) 4.7 (2.3)
Fine root turnover rate (a�1) 0.333 2.6 (0.3) 5.9 (0.7) 5.1 (0.5)
Allocation to fine roots relative to leaves, hardwoods 1 1.8 (0.9) 0.9 (0.2) 1.1 (0.2)
Allocation to fine roots relative to leaves, conifers 1 0.56 (0.15) 0.24 (0.07) 0.35 (0.07)
Water availability parameter (m2 a�1 (kgC root)�1) 160 80 (810) 220 (400) 150 (1200)
Conifer growth respiration fraction 0.333 0.46 (0.08) 0.46 (0.07) 0.45 (0.06)
Hardwood growth respiration fraction 0.333 - - -
Hardwood storage respiration rate (a�1) - 0.62 (0.17) 0.67 (0.08) 0.62 (0.08)
Optimal temperature (�C) 35 - - -
Temperature convexity parameter 0.19 - - -
Temperature convexity parameter 1.8 - - -
Optimal soil moisture (m3 m�3) 0.6 0.94 (3.5) 0.89 (0.05) 0.89 (0.04)
Soil moisture convexity parameter 5.0 4 (336) 5.2 (1.9) 5.1 (1.8)
Soil moisture convexity parameter 5.6 5 (237) 4.8 (7.2) 4.5 (5.8)
Temperature Q10 - 3.0 (90) 2.2 (0.1) 2.1 (0.09)

aAll optimizations included the forest inventory and hourly evapotranspiration data sets. In addition, the ‘Hourly only’ optimization included hourly NEP
data, the ‘Hourly + Yearly’ included hourly and yearly NEP data, and the ‘Hourly + Yearly + Monthly’ included hourly, yearly and monthly NEP data.
Including the yearly and monthly NEP data substantially reduces parameter uncertainty.
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responded to the annual-scale fluxes. Adding monthly fluxes
further improved the optimization, yielding 12 parameters
with coefficients of the variation less than 25%; the additional
parameters were M and TV,lo.
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