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Predicting ecosystem dynamics at regional
scales: an evaluation of a terrestrial

biosphere model for the forests
of northeastern North America
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2Department of Geosciences and Program in Atmospheric and Oceanic Sciences,
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Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial
carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a
number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere
models using flux-tower measurements, to date there have been relatively few assessments of their
ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a
regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial
biosphere model, evaluating the model’s predictions against forest inventory measurements for the
northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default
parametrization, which used parameter values from the literature, and a constrained model paramet-
rization, which had been developed by constraining the model’s predictions against 2 years of
measurements from a single site, Harvard Forest (42.58 N, 72.18 W). The analysis shows that the
constrained model parametrization offered marked improvements over the default model formu-
lation, capturing large-scale variation in patterns of biomass dynamics despite marked differences
in climate forcing, land-use history and species-composition across the region. These results imply
that data-constrained parametrizations of structured biosphere models such as ED2 can be success-
fully used for regional-scale ecosystem prediction and forecasting. We also assess the model’s ability to
capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different
sizes and types of trees, and then discuss the implications of these analyses for further reducing the
remaining biases in the model’s predictions.

Keywords: terrestrial ecosystem dynamics; ecological prediction; terrestrial biosphere model
evaluation; northeastern USA; temperate forests
1. INTRODUCTION
Terrestrial biosphere models are critical tools for infer-
ring the current state of terrestrial ecosystems, and
predicting changes in their composition, structure and
function over the coming century. Previous model
inter-comparisons have found that terrestrial biosphere
models are able to replicate spatial patterns of potential
vegetation and seasonal patterns of changes in regional
atmospheric CO2, but that the different models diverge
in their predictions of ecosystem composition, struc-
ture and function under novel climates [1–3]. One
recent model inter-comparison [2] showed particu-
larly striking discrepancies in North America, where
climate–carbon–vegetation feedbacks ranged from
r for correspondence (paul_moorcroft@harvard.edu).
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being minimal to causing large increases in forest cover.
Because North America is still recovering from large-
scale deforestation during the past century, there is
large uncertainty surrounding the magnitude of the
continent’s current net carbon uptake [1–4], and its
ability to sequester carbon in the future.

A powerful method of reducing model uncertainty
is to use observational datasets to estimate model par-
ameters [5,6]. This approach is particularly relevant
for terrestrial biosphere models because a significant
number of key parameters and aspects of model formu-
lation, such as those determining patterns of carbon
allocation, are difficult to measure directly. In North
America, observations spanning many spatial and
temporal scales and sensitive to many processes are
available for constraining and evaluating the perform-
ance of terrestrial biosphere models. These include
eddy-flux datasets associated with the Ameriflux net-
work of eddy-flux towers [7], forest inventory datasets
from the USDA Forest Inventory and Analysis (FIA)
and the Canadian Forest Service [8], and phenology
This journal is q 2011 The Royal Society
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data from the USA National Phenology Network [9].
Canopy reflectance data [10] and measurements of
soil carbon [11] may also be used to reduce model
uncertainty. In the near future, many other datasets
will be collected as part of the National Ecology
Observatory Network (NEON) and will be broadly
available [12].

Early model-data synthesis studies [13–15] focused
on evaluating terrestrial biosphere model predictions
against flux-tower measurements of net ecosystem
exchange (NEE). Current model evaluation initiatives
such as the North American Carbon Programme
(NACP) model-data intercomparison [16] have con-
tinued to focus on NEE measurements, despite the
current availability of other diverse datasets. Although
NEE is a relevant diagnostic of current ecosystem
function, an exclusive focus on NEE is problematic
because NEE measurements by themselves are un-
likely to provide sufficient information to adequately
constrain terrestrial biosphere model predictions [14].

As far as we are aware, the Ecosystem Demography
version 2 (ED2) biosphere model was the first to be
simultaneously constrained using eddy-flux mea-
surements and forest inventory measurements [17].
Specifically, these measurements included eddy-flux
tower measurements of CO2 and H2O and forest
inventory measurements of tree growth and mortality
spanning a 2 year period at Harvard Forest (42.58 N,
72.18 W). Subsequent comparison with independent
datasets showed that the constrained model formula-
tion produced realistic estimates of eddy-fluxes, tree
growth and mortality dynamics on timescales ranging
from hours to a decade. The generality of the model
was illustrated by comparing model predictions against
ecosystem measurements at Howland Forest (45.18 N,
68.88 W), where the model realistically predicted
the observed patterns of carbon fluxes and tree
growth without further parameter adjustment, despite
the vegetation composition being markedly different
from that of Harvard Forest.

One reason that this approach to model par-
ameterization and evaluation has not been adopted
previously is that conventional terrestrial biosphere
models use a ‘canopy-as-big-leaf ’ approximation that
limits their ability to connect to tree-level measurements
of growth and mortality. In contrast, the structured bio-
sphere model used by Penner et al. [18] comprises a
system of partial differential equations that approximate
the behaviour of a spatially distributed ensemble of
individual plants [19], enabling it to predict the
growth and mortality rates of individual plants, and
thus directly connect to forest inventory measurements
of tree demography.

The goal of this paper is to evaluate ED2’s ability to
predict the regional decadal-scale biomass dynamics of
the forests of northeastern North America. In §2, we
describe the USA and Quebec (QC) forest inventory
measurements that we used to evaluate the model’s
performance, summarize the ED2 model, and give
details on our numerical simulation experiments. In
§3, we compare the predicted regional patterns of
growth and mortality to the observations. In §4, we
explore how the optimization improved the predic-
tions and investigate the reasons for the remaining
Phil. Trans. R. Soc. B (2012)
discrepancies between the model and the observations.
In §5, we present our conclusions.
2. METHODS
(a) Datasets

Decadal scale forest inventory measurements covering
the past two decades are available for the northeastern
USA and Quebec. In the USA, these forest censuses
have been undertaken under the auspices of the national
FIA programme [8,20]. While the sampling designs
vary, the methodology used in the northeastern USA is
relatively uniform: a grid of photo points overlaid on
aerial photographs is used to generate a series of plot
locations stratified by land use and timber volume;
then, individual measurements of tree diameter growth
and tree status (alive or dead) are made over a census
interval of approximately 10 years for trees having diam-
eters greater than 5 inches (12.7 cm). Plots are assigned
weighting factors specifying their proportion of the total
landscape sample. For further details see http://www.fs.
fed.us/ne/fia/.

In a similar way, Canadian forest inventories have
been undertaken on the provincial level and have been
used to obtain a detailed picture of Canadian forests
[18]. In each on-the-ground inventory plot, all trees
with a diameter at breast height (DBH) greater than
10 cm in a one-twentieth hectare area were measured
and identified to species. Unlike the FIA inventory
data, the Quebec inventory contains information on a
substantial fraction of the understory. Within each
plot, trees between 1 and 10 cm DBH were censused
in a 1/200th hectare sub-plot. The species and the size
of each stem sub-plot were recorded; however, the
trees were not tagged, and thus were not re-censused.

The regional distribution of the forest inventory
plots is illustrated in figure 1a. Over 16 000 plots
were sampled in the US northeast of 408 N, 818 W,
and over 11 000 plots were sampled in Quebec south
of 528 N. Since most plots were inventoried twice,
once in the mid-1980s and once in mid-1990s, it
was possible to compute rates of growth, natural
mortality and harvesting across the region.

(b) Model description

ED2 is a terrestrial biosphere model providing a phys-
ically and biologically consistent framework for both
short-term and long-term studies of terrestrial ecosys-
tem dynamics. The model uses a system of size- and
age-structured partial differential equations to closely
approximate the first moment behaviour of a cor-
responding individual-based stochastic gap model to
realistically represent fine-scale heterogeneity in
canopy structure within each grid cell (figure 2). The
biomass density of trees of type i, of size vector z
existing in a patch of age a at time t is denoted
Ci(z,a,t) and evolves according to:

@Ciðz; a; tÞ
@t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

change in plant density

¼ � @Ciðz; a; tÞ
@a|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ageing

�giðz; a; tÞ �
@Ciðz; a; tÞ

@z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
growth

� miðz; a; tÞCiðz; a; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mortality

: ð2:1Þ
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Figure 1. Forest inventory plots for the USA and Quebec. (a) Locations of USA (green) and Quebec (blue) inventory plots.
There are over 16 000 plots northeast of 408 N, 818 W in the USA and over 11 000 plots south of 528 N in Quebec.
(b) Locations of states and provinces. Abbreviations are expanded in the text. (c) AGB from forest inventories aggregated at
0.258 resolution. (d) Decadal-mean harvesting rates of AGB for the forested plots. Data are missing for all Canadian grid
cells outside of Quebec as well as for a few grid cells in northern Quebec; these grid cells are coloured black.
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Note that z has three components corresponding
to the sizes of the plant’s active, storage and dead bio-
mass pools. Plant DBH and height are computed from
these biomass pools via allometric relationships. The
growth rate of each compartment of z is given by
gi(z,a,t), while the mortality rate is mi(z,a,t).

The changing landscape age-structure and associ-
ated sub-grid scale heterogeneity arising from prior
disturbance history is tracked in the model by:

@pjða; tÞ
@t|fflfflfflffl{zfflfflfflffl}

change in landscape age structure

¼ � @pjða; tÞ
@a|fflfflfflffl{zfflfflfflffl}

ageing

�
X

k

L jkða; tÞpjða; tÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

disturbance

;

ð2:2Þ

where pj(a,t) is a vector whose elements describe the
distributions of times since disturbance for each of
the m land-use states represented in the model, and
Ljk is an m � m matrix whose elements describe the
disturbance history forcing—the rate at which land
transitions between the different land-use states as a
function of time and age (time since last disturbance).

Under the assumption that a fraction ri of seeds
is randomly dispersed between gaps within a grid
Phil. Trans. R. Soc. B (2012)
cell and that all other seeds remain within their
gap of origin, the recruitment of new seedlings
fi(z,a,t) corresponds to a flux of individuals into
the system at (z0,a), yielding the following boundary
condition:

Ciðz0; a; tÞ ¼
Ð1

0

Ð1

z0
Ciðz; a0; tÞfiðz; a0; tÞpða0; tÞridz da0P

j gi;jðz0; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
random dispersal

þ
Ð1

z0
Ciðz; a; tÞfiðz; a; tÞð1� riÞdzP

j gi;jðz0; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
local dispersal

:

ð2:3Þ

Equation (2.1) has a second boundary condition
that describes the state of the ecosystem after the
disturbance event:

Ciðz; 0; tÞ ¼
X

k

ð1

0

si;kðz; a; tÞpkða; tÞda

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
plant community following disturbance event

;

ð2:4Þ

where the function si,k(z,a,t) describes the survivorship
of individuals of size z and type i following a disturbance

http://rstb.royalsocietypublishing.org/
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Figure 2. ED2 model structure and processes. (a) Each grid cell is subdivided into a series of tiles. The relative area of each

tile is determined by the proportion of canopy-gap-sized areas within the grid cell having a similar canopy structure as a result
of a common disturbance history. (b) ED2 computes the multi-layer canopy fluxes of water, internal energy and carbon within
each sub-grid scale tile. (c) Summary of the long-term vegetation dynamics within each tile arising from the integration
of short-term fluxes shown in (b).
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of type k. The rates of growth, mortality and recruit-
ment within canopy are computed from a
corresponding vertically and horizontally stratified set
of equations that determine the land–atmosphere
exchange of carbon, water and energy between the eco-
system and the atmosphere (figure 2). For a complete
description of the model, see [17].

Following Albani et al. [21], five empirically defined
plant functional types (PFTs) differing in their physi-
ology and life-history characteristics were used to
represent the range of vegetation found within the
northeastern USA: three deciduous broad-leaved tree
types (early-, mid- and late-successional), and two
coniferous tree types (northern pines (NP) and late-
successional conifers (LWC)). These PFTs exhibit
correlated differences in their leaf physiological traits,
such as specific leaf area, leaf longevity, foliar C : N
ratio, photosynthetic rate per unit leaf area (Vm0),
and in their growth, mortality and recruitment of life-
history characteristics (see electronic supplementary
material, table S1).
Phil. Trans. R. Soc. B (2012)
(c) Numerical experiments

We evaluated the ED2 model’s regional-scale predic-
tions of above-ground biomass (AGB) dynamics by
conducting two simulations for the northeastern USA
and southern Quebec at 0.258 � 0.258 resolution for
1983–1995, a time interval that corresponds to the
approximate period of the measurements. The first
simulation, which we refer to as ‘ORIG’, was a litera-
ture-based parametrization used previously to conduct
simulations for eastern North America [21]. The
second simulation, which we refer to as ‘HF-OPT’,
used the constrained model parametrization that was
developed by fitting the model’s predictions to 2 years
of eddy-flux and tree census datasets from Harvard
Forest [17]. The first 2 years of simulation (1983–
1984) were discarded to avoid the potential impact of
transient dynamics arising from the soil moisture initial
condition. The model was forced with solar radiation,
long wave radiation, temperature, humidity, precipi-
tation, wind speed and pressure data from the
European Centre for Medium-Range Weather Forecasts

http://rstb.royalsocietypublishing.org/
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(ECMWF) ERA-40 re-analysis dataset [22], while soil
textural class for each grid cell was specified from the
18 � 18 resolution USDA global soil database, since
higher resolution data were unavailable for Quebec. As
in Medvigy et al. [17], we drove the optimized model
with average phenology obtained from moderate reso-
lution imaging spectroradiometer (MODIS) between
2001 and 2004 because region-wide phenology data
were not available for this period. The forest inventory
measurements were also used to calculate the spatial
pattern of forest harvesting (figure 1d), which were
then applied as a disturbance forcing to the model.

Initial conditions for the vegetation structure and
composition at the beginning of the simulation were
prescribed using forest inventory measurements from
approximately 1985. Each inventory plot was represen-
ted as a sub-grid-scale tile (figure 2a), and individual
trees were assigned to the closest PFT [17]. However,
our analysis excluded the relatively small number of
plots that occurred on highly atypical soils and plots
for which growth and mortality information was not
available. The resulting initial condition for total AGB
is shown in figure 1c. There is a general latitudinal gra-
dient, with values of about 50 tC ha21 typical in the
south decreasing to about 20 tC ha21 in the north.
Lower AGB levels near the Great Lakes and in Maine
(ME) were exceptions to the general trend. Hardwoods
had more AGB than conifers in all US states, but hard-
woods and conifers have roughly equal amounts of
biomass in Quebec (figure 3a; see also figure 1b for a
map of state and province locations). Early-successional
hardwoods (ESHWs; figure 3b) comprise 10–20% of
the AGB in all states and provinces (figure 3a),
and are the dominant PFT in central Quebec. Mid-
successional hardwoods (MSHWs; figure 3c) are
dominant in Pennsylvania (PA), southern New York
(NY), Connecticut (CT), Massachusetts (MA) and
parts of southern Quebec. Late-successional hardwoods
(LSHWs; figure 3d) are particularly common in north-
ern NY, Vermont (VT), New Hampshire (NH) and
ME. NP are generally found in eastern MA, southern
NH and southern ME (figure 3e). They do not domin-
ate any of the grid cells. LWC are found mainly in the
northern half of the domain and are the dominant
species north of about 488 N (figure 3f ).
3. ANALYSIS AND RESULTS
(a) Forest growth dynamics

The observed pattern of forest growth within the region
calculated from the forest inventory measurements is
shown in figure 4a. Rates of biomass growth are highest
in PA and western NY, and generally decrease as one
moves north and east across the region, with the lowest
rates of accumulation being found in northern Quebec
and ME. The corresponding predictions of the origin-
al (ORIG) and constrained ED2 (HF-OPT) model
formulations are shown in figure 4b,c, respectively.
ORIG systematically over-predicts biomass growth
rates across the entire region (figure 4b), although it
qualitatively reproduces the observed spatial gradient
of higher biomass growth in NY and PA and lower
biomass growth in ME and Quebec. Its area-averaged
bias and root mean square error (r.m.s.e.) were 0.68
Phil. Trans. R. Soc. B (2012)
and 0.84 tC ha21 y21, respectively. The systematic
over-prediction of growth rates was largely corrected in
HF-OPT. (figure 4c; bias¼ 20.06 tC ha21 y21;
r.m.s.e. ¼ 0.41 tC ha21 y21). In particular, HF-OPT
reproduces the observed variation in patterns of biomass
growth across the New England states and Quebec (CT,
RI, MA, VT, NH, ME and Quebec) both qualitatively
and quantitatively, although it under-predicts biomass
growth in NYand PA. Figure 4d summarizes the overall
spatial pattern, showing the observed and predicted
average growth rates for each state/province.
(b) Forest mortality dynamics

The observed pattern of forest biomass mortality across
the region is shown in figure 5a. The observed rates of
biomass mortality are higher in southern Quebec than
in northern Quebec, the New England states, NY, or
PA. The corresponding predictions of the original and
constrained ED2 model formulations are shown in
figure 5b,c. The area-averaged biomass mortality pre-
dicted by ORIG had a bias of 0.07 tC ha21 y21 and an
r.m.s.e. of 0.35 tC ha21 y21. While the ORIG simu-
lation captures the high-biomass mortality rates in
southern Quebec, it under-predicts biomass mortality
rates in northern Quebec, and its predictions of biomass
mortality rates to the south (in the New England states,
PA and NY) are unrealistically high, with discrepan-
cies as high as 0.5–1 tC ha21 y21 in the southwest of
the domain. The biomass mortality rates predicted
by HF-OPT (bias ¼ 20.11 tC ha21 y21; r.m.s.e. ¼
0.28 tC ha21 y21) are generally lower than those of
ORIG. These lower biomass mortality rates are a
closer match to the observations throughout the south,
but the mismatch is increased in northern areas.
Figure 5d shows the observed and predicted average
biomass mortality rates for each state/province. As the
figure indicates, the ORIG formulation has reasonable
mortality rates in Quebec but systematically over-
predicts biomass mortality in all the US states except
ME. The predictions in the southernmost states (CT,
NY and PA) are two to four times higher than the
observed rates. In contrast, the HF-OPT model formu-
lation has substantially improved predictions for all of
the US states, but under-predicts biomass mortality
rates in ME and Quebec.
(c) Sub-grid scale variability in growth

and mortality dynamics

One of the distinguishing features of ED2’s structured
biosphere model equations (equations (2.1)–(2.4)) is
that they predict AGB dynamics not only at the reso-
lution of climatological grid cells, but also at the
finer sub-grid scales that characterize biotic heterogen-
eity in canopy structure and dynamics. In this section,
we evaluate the model’s predictions of size- and PFT-
related sub-grid scale variability in patterns of biomass
growth and mortality dynamics. Our objective in doing
so is to identify patterns of sub-grid scale variability in
model bias that can assist in identifying mechanisms
and processes responsible for mis-matches in pre-
dictions, For each grid cell, the relative bias in AGB
growth (calculated as predicted growth/observed
growth 2 1) for each tree size class was computed,

http://rstb.royalsocietypublishing.org/
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and then the bias values for each grid cell were strati-
fied according to the observed mean growth rate.
This grouping by size and by growth rate enables
assessment of the accuracy of the model’s predictions
for plants with different levels of resource availability
because the observed growth rate incorporates both
the direct impacts of a plant’s physical environment
and its biological environment arising from local
competition for light, water and nutrients.

The growth rate bias of ORIG is shown in figure 6a.
As would be expected from figure 4, the bias is
Phil. Trans. R. Soc. B (2012)
generally large and uniformly positive, with an average
bias across all growth rate and size classes of 150 per
cent. However, as the plot shows, the bias is larger
for small trees, and is generally larger for trees growing
in unfavourable environments (i.e. in sites with low
growth rates). The corresponding growth rate bias
for HF-OPT model formulation (figure 6b) shows
that the bias is generally much smaller in magnitude
than in ORIG: the average bias in HF-OPT is only
4.7 per cent. The bias of the trees in the largest size
class has shifted from a positive bias to a negative
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bias of similar magnitude, but in all other size classes
the bias is shifted towards zero. In terms of variation
with respect to grid-cell productivity, HF-OPToutper-
formed ORIG in all productivity classes except those with
the highest growth rates. As the figure indicates, the re-
parametrization improved region-wide growth rates by
reducing the growth for trees of all size classes in all
environments, but particularly for trees in moderately
productive sites. This remaining bias impacts northern
Quebec, where growth is over-predicted, and also PA
and NY, where growth is under-predicted. In the north,
where observed growth rates are generally low, the pre-
dicted growth of large trees is reasonably accurate but
the predicted growth rates of smaller trees remain too
high. Conversely, in areas with high growth rates such
as PA and NY, the predicted growth rate of small trees
is reasonable, but the large trees are predicted to grow
too slowly.

The dependence of biomass mortality on tree size and
grid cell-averaged growth rate is shown in figure 7a,b
for ORIG and HF-OPT. For small trees in sites with
moderate to high rates of growth, ORIG over-predicts
mortality. However, the magnitude of the over-predic-
tion is reduced in larger size classes and in grid cells
with lower growth rates. For trees with a DBH greater
than 50 cm, ORIG under-predicts mortality regardless
of grid-cell productivity class. HF-OPT significantly
improves the biomass mortality rates of small trees in
moderate- to high-productivity grid cells; however,
there is very little difference between ORIG and
Phil. Trans. R. Soc. B (2012)
HF-OPT for trees in grid cells with the highest pro-
ductivity, where both model formulations over-predict
biomass mortality. Mortality rates for trees with DBH
greater than about 40 cm are consistently under-pre-
dicted. These results indicate that, in the generally
high-productivity sites found in the southern part of
the domain (figure 5), the improved biomass mortality
rates in the constrained parametrization reflect a cancel-
ling of errors: small trees experience excessive mortality,
while larger trees experience too little. In contrast, in the
generally low-productivity north, total mortality in the
constrained model remained too low, primarily because
of insufficient large-tree mortality.

(d) Biomass dynamics of different plant

functional types

Growth: The ESHW PFT was parametrized using
birch and aspen as canonical species [21]. The pat-
terns of biomass growth largely reflected the pattern
of occurrence (cf. figures 3b and 8a). The ORIG
model formulation fared very poorly in predicting
early hardwood growth, over-predicting by a factor of
2–3 (figure 8b and table 1). In contrast, the HF-
OPT formulation had far more realistic biomass
growth rates (figure 8c and table 1) throughout the
region, though in a few areas such as northern and
western NY, the HF-OPT growth rates were slightly
lower than observed.

MSHWs were parametrized on the basis of red oak
and red maple. Observed growth rates decrease with

http://rstb.royalsocietypublishing.org/
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increasing latitude (figure 8d). As with the ESHWs, the
ORIG formulation substantially over-predicts MSHW
biomass growth (figure 8e and table 1). HF-OPT’s pre-
dictions are dramatically improved (figure 8f and table
1), especially in New England and Quebec. However,
in NY and PA, the growth rates predicted by HF-OPT
are lower than observed, with the magnitude of under-
prediction comparable with the under-prediction of
ESHWs. It is the under-prediction of these two PFTs
that is responsible for the under-prediction of the bio-
mass growth in the southwest of the domain seen in
figure 4. LSHWs were parametrized on the basis of
sugar maple and beech [21]. As with all other PFTs,
ORIG over-predicted the biomass growth of the late-
successional PFT (compare figure 8g,h and table 1),
and this over-prediction was corrected in HF-OPT
(figure 8i and table 1), which closely matched the
observed pattern of late-successional growth (compare
figure 8g,i).

Evergreen needleleaf PFTs were classed either as
NP or as LWC (principally hemlock, spruce and fir).
The observed biomass growth rates of the northern
pine PFT is highest in areas of southern New England
and Quebec, where it is relatively abundant (figure 8j).
The ORIG formulation systematically over-predicts
the rates of northern pine biomass growth (figure 8k
and table 1), while HF-OPT successfully corrects the
over-prediction of northern pine growth, yielding a
spatial pattern that is quantitatively and qualitatively
accurate (figure 8l and table 1). The observed
growth rate of LWC increases with latitude, reaching
a maximum in the northeast corner of the domain
(figure 8m). The ORIG formulation systematically
over-predicts the magnitude of late-successional coni-
fer growth (figure 8n and table 1). The growth rates
predicted by the HF-OPT formulation are more realis-
tic (figure 8o and table 1), but are still over-predicted,
especially in the north of the domain. It is this discrep-
ancy in the biomass growth of the late-successional
conifer PFT that is primarily responsible for HF-
OPT’s over-prediction of total biomass growth in
northern regions (figure 4).
(e) Mortality

The observed biomass mortality of the early hardwood
PFT was generally higher in the north (Quebec) than
in the south (figure 9a). In contrast, the observed
biomass mortality of MSHWs was highest in the south-
ernmost part of the domain (figure 9d), and the LSHWs
had their greatest biomass mortality rates in southern
Quebec (figure 9g). In both ORIG (figure 9b) and HF-
OPT (figure 9c), the ESHW biomass mortality rates
are too low in Quebec, but their mortality rates in the
US states match the observations more closely. In the
ORIG model formulation, the mid- and LSHW biomass
mortality rates are over-predicted across the US states
(figure 9e,h, respectively). HF-OPT reduces these rates
for both the MSHWs and LSHWs (figure 9f,i, respect-
ively) to the level of the observations throughout much
of the domain. The main exception is in western NY,
where HF-OPT continues to over-predict mid- and
late-successional biomass mortality; however, this is
Phil. Trans. R. Soc. B (2012)
relatively small compared to the under-prediction of
ESHW mortality in Quebec.

The observed northern pine mortality rates (figure 9j)
are largest in north central Quebec but are generally
a small component of the total mortality. The late-
successional conifer biomass mortality rates are highest
in the northeast of the domain (figure 9m), where they
are a significant component of the total AGB (figure
3e). The ORIG model formulation over-predicts north-
ern pine and late-successional conifer biomass mortality
in most of the USA, but under-predicts their biomass
mortality in Quebec (figure 9k,n, respectively). In con-
trast, HF-OPT predicts more realistic mortality rates
across the US states; however, the under-prediction of
northern pine and late-successional conifer biomass
mortality in Quebec increases (figure 9l,o, respectively).
These results are summarized in table 2, which presents
the area-averaged biomass mortality biases and r.m.s.e.s
from ORIG and HF-OPT.
4. DISCUSSION
We found that the HF-OPT formulation of the ED2
biosphere model offered marked improvements over
the ORIG model parametrization in predicting regional
decadal-scale biomass dynamics in the northeastern
North America. HF-OPT predicted AGB growth
much more realistically than ORIG (figure 4), decreas-
ing the region-wide bias from 150 per cent to less than 5
per cent, and also resulted in significant improvements
in rates of biomass mortality across the region (figure
5). As discussed in more detail in Medvigy et al. [17],
there were a number of important differences between
the ORIG and HF-OPT model formulations that con-
tribute to this improved predictive ability. In
particular, the improvements in AGB growth in HF-
OPT relative to ORIG reflected higher rates of fine
root turnover, a shorter growing season for hardwoods
and a lower maximum photosynthetic rate for conifers,
which all reduce rates of AGB growth.

The predictions of sub-grid scale heterogeneity
highlight how further improvements in the model’s
predictions of AGB growth will require simultaneously
decreasing the growth rates of small trees, particularly
in low-productivity sites, while increasing growth
of high-productivity sites, especially for large trees
(figure 6b). Several candidate mechanisms may explain
this sub-grid scale signature of the remaining inaccur-
acies in HF-OPT AGB growth predictions. One source
of model error may be the current model formulation’s
relatively simple representation of plant diversity
[23–25]. ED2 differs from other biosphere models
in having several temperate deciduous and coniferous
PFTs represented; however, the particular species
that comprise each PFT class varies by location. For
example, the predominant late-successional conifer
species at Harvard Forest is eastern hemlock (Tsuga
canadensis), while the dominant late-successional tree
in northern Quebec is black spruce (Picea mariana), a
species that is not found at Harvest Forest. Thus, the
over-prediction of late-successional conifer growth and
under-prediction of its biomass mortality, seen in figures
8 and 9, respectively, implies that ED2 may benefit
from the introduction of a separate boreal conifer
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Table 1. Area-averaged biases and r.m.s.e.s for biomass

growth. Results are listed for all trees, and then for
individual PFTs. Grid cells not containing a particular PFT
were excluded from the calculations corresponding to that
PFT. Units are tC ha21 y21.

bias r.m.s.e.

PFT ORIG HF-OPT ORIG HF-OPT

all 0.68 20.06 0.84 0.41

ESHW 0.34 20.04 0.44 0.16
MSHW 0.20 20.10 0.30 0.19
LSHW 0.08 0.01 0.16 0.10
NP 0.06 0.03 0.15 0.11
LSC 0.08 0.05 0.20 0.15
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PFT. Similarly, in NY and PA, where growth rates are
under-predicted, Prunus spp. comprise over 90 per
cent of the ESHW PFT, while in the New England
states and Quebec, the ESHWs are primarily birches
(Betula spp.) and poplar (Populus spp.).

An alternative explanation for the above discrepancies
is the absence of physiological, morphological or bio-
chemical acclimation of PFT traits in different regions
[26–29]. Distinguishing between these two potential
explanations is important because the time scales of eco-
system responses arising from acclimation responses
within individuals to changes in climate forcing are
likely to be considerably shorter than ecosystem responses
arising from climate-induced shifts in the species-compo-
sition. Furthermore, the simulations did not account for
the effects of nitrogen deposition and increasing CO2

concentrations. In particular, the absence of nitrogen
deposition could potentially explain the under-prediction
of growth rates in PA and western NY [30], where nitro-
gen deposition rates are high. We also expect that an
improved radiative transfer scheme that accounted for
the structure of neighbouring patches would likely
reduce the amount of light captured by small trees, redu-
cing their growth rates, and thus reducing the bias with
the observations (figure 6b). The under-estimation of
AGB growth of large trees may be corrected by allow-
ing leaf nitrogen to vary as a function of an individual’s
position in the canopy [31,32], resulting in increased
photosynthetic rates for the largest trees.

HF-OPToffered better mortality rate predictions than
the default model, especially for small trees in the
southern part of the region (figures 5 and 7). The total
mortality rate in ED2 (equation 2.1) is the sum of a den-
sity-dependent rate and a density-independent rate. The
density-dependent rate becomes large as trees fall into
negative carbon balance. Because ORIG and HF-OPT
have identical density-independent rates, the differences
between their mortality predictions must be due to differ-
ences in the density-dependent mortality rates. The sites
in NY and PA have relatively large AGB (figure 1c), and
may also be expected to have large leaf area indices.
The small trees in such sites are relatively shaded and,
in the model, would have relatively large density-depen-
dent mortality rates. Re-parametrization in HF-OPT
decreased the impact of shading on mortality, though
figure 7b suggests that it has not yet been reduced
enough in the highest productivity sites. One way to
Phil. Trans. R. Soc. B (2012)
address this problem would be to reduce leaf nitrogen
for understorey trees, which would reduce leaf respiration
and thus improve the carbon balance of these trees [33].
More realistic representations of crown shape and
accounting for phototropism would also be likely to
reduce mortality of shaded individuals [34].

Trees in larger size classes are not shaded, and so
experience mainly density-independent mortality. In
both the ORIG and HF-OPT, density-independent
mortality was treated as a constant rate for each PFT,
independent of size and was calibrated on the basis of
the mortality of trees solely from the FIA. The Quebec
inventory was not used to calibrate these mortality
rates. In the highly productive sites of the northeastern
USA, over-prediction of small tree mortality balanced
the under-prediction of large tree mortality, leading
to a realistic average. However, in Canada, biomass
densities are lower (figure 1c), and so smaller trees are
less shaded and do not experience excessive density-
dependent mortality. Since the large trees continue to
experience insufficient density-independent mortality,
the overall result is an under-prediction of mortality.
Several avenues will likely have to be explored in order
to address this issue. First, model error may be reflecting
the absence of climatic variation in density-independent
mortality [35,36]. Allowing mortality rates to increase
in areas experiencing cold winter, or springtime temp-
eratures would increase mortality rates in Quebec
relative to states like NY or PA. Second, ED2 did not
explicitly include the impact of other sources of den-
sity-dependent mortality, such as insect outbreaks. In
particular, omitting the impacts of the spruce budworm
(Choristoneura fumiferana Clem.), for example, may
have caused the model to under-predict mortality of
LWC in Quebec [37].
5. CONCLUSIONS
We found that the HF-OPT model parametrization
of the ED2 biosphere model developed by Medvigy
et al. [17] offers a marked improvement over the ORIG
literature-based model parametrization of Albani et al.
[21] in predicting regional decadal-scale biomass
dynamics in the northeastern USA and in Quebec.
The biomass growth rates of all trees were reduced,
and the mean model bias was nearly eliminated. Mor-
tality improved mainly for small trees in moderate to
high-productivity grid cells. These results of the analysis
are encouraging as they demonstrate how short-term
flux tower measurements, when combined with forest
inventory measurements of forest demography can be
successfully used to develop terrestrial biosphere model
parametrizations that are general, not site-specific,
and that these parametrizations can yield dramatic
increases in the accuracy of a terrestrial biosphere
model’s predictions of long-term, large-scale, terrestrial
ecosystem dynamics.

An important next milestone in assessing the
predictive capabilities of terrestrial biosphere models
is assessing their ability to capture inter-annual
variability in biomass dynamics. The infrequent,
approximately once per decade, re-measurement
period in historical forest inventory data precludes an
examination of inter-annual variability in AGB
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Table 2. Area-averaged biases and r.m.s.e.s for biomass

mortality. Results are listed for all trees, and then for
individual PFTs. Grid cells not containing a particular PFT
were excluded from the calculations corresponding to that
PFT. Units are tC ha21 y21.

bias r.m.s.e.

PFT ORIG HF-OPT ORIG HF-OPT

all 0.07 20.11 0.35 0.28

ESHW 0.01 20.05 0.12 0.11
MSHW 0.07 0 0.14 0.10
LSHW 0.02 0 0.09 0.07
NP 0 20.01 0.04 0.03
LSC 20.02 20.05 0.11 0.11
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dynamics. However, the FIA has also recently been
changed, and now the re-censusing of plots is staggered
in time. This will help forest inventories to be sensitive to
interannual variability, and, as a result, the regional
impacts of climate and disturbances such as ice storms
and pathogen attacks on vegetation growth and mor-
tality rates should be accessible to observation.
Evaluations of terrestrial biosphere model predictions
of interannual variability in AGB dynamics against
these datasets offer the promise of providing a critical
assessment of whether current terrestrial biosphere
model formulations have the accurate levels of climate
sensitivity that are essential for accurate prediction of
terrestrial ecosystem responses to future climate change.

We thank the USDA FIA programme and the Quebec Forest
Inventory for providing the forest inventory measurements that
were used in this analysis. These datasets were an invaluable
source of information for assessing the regional-scale
predictions of the ED2 model.
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