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Information derived from a species’ range is central to
the science of ecology. Current patterns of species and

physiological trait distributions contain important infor-
mation about plant functional relationships to climate
and other environmental controls (Cody and Mooney
1978; Davis 1986; Bonan and Sirois 1992; Kearney and
Porter 2009; Rödder et al. 2011). In a foundational paper,
Ter Braak and Prentice (1988) wrote, “All species occur in
a characteristic, limited range of habitats, and within their
range, they tend to be most abundant around their partic-
ular environmental optimum”. While this appraisal of the
range–niche relationship is too simplistic, ignoring the

effects of species interactions (competition, mutualisms,
predation, parasitism, and herbivory), distributional infor-
mation is nonetheless crucial for constructing models that
will help us to understand future ecological responses to
global climate change. Some modeling paradigms extract
information directly from species’ ranges to estimate
model parameters, while others rely on distributions to
validate models based on mechanistic simulation of repro-
duction, mobility, and competition.

Current rates of climate change equal or exceed the
highest rates observed in the recent paleorecord (Loarie
et al. 2009), while the impacts of land-use changes and
invasive species are unprecedented. Given current rates
of environmental change, the information inherent in
species’ range information will soon reflect transient
rather than steady-state conditions (Figure 1). While
vagile, fast-reproducing plant and animal species may
track shifts in climate and its impacts on key resources
(Tingley et al. 2009), the abundance and spatial distribu-
tion of many species will diverge more and more from
their historical climate limits. High rates of environmen-
tal change imply that distributional data will contain less
and less information about species’ niches. The farther
the planet moves away from the pre-Anthropocene
biome configuration, the more important it will become
to model community reassembly into new configurations.

Observations are urgently needed to provide a baseline
global inventory of the biosphere. This information will
be critical for developing robust relationships between
environmental characteristics and biotic properties. It
will also serve as a useful initial condition for describing
the current state of the terrestrial biosphere that can be
used to form the baseline for global ecological forecasts.
Given our current state of knowledge, we cannot know at
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In a nutshell:
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• As species’ distributions move away from steady state, infor-
mation about their environmental niches from range–envi-
ronment correlations is lost

• New remote-sensing technologies deployed on airplanes and
spacecraft can provide vast quantities of distributional data
about vegetation and can be deployed quickly enough to
observe species’ range–environment correlations before they
are lost

• Next-generation remote sensing will allow us to identify
species from observed canopy traits, opening up the possibil-
ity of global maps of plant species and traits at high resolution 
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what point the distributions of a particular species will
move out of its Holocene quasi-equilibrium; however,
given current rates of climate and environmental change,
the sooner the baseline is measured the better.
Traditional methods of field identification and mapping
and lab-based assays of variability are too slow and lim-
ited to provide increased amounts of new information
quickly. Technological innovations are required and the
sooner those innovations are implemented, the greater
the amount of information will be obtained about the
present-day distribution of diversity. 

n Species’ ranges as legacy information

What is the current status of climate–vegetation relation-
ships? The modern-day configuration of biomes began
late in the Holocene, a 12 000-year-long period of rela-
tively stable climate conditions, during the latter part of
which global mean temperatures varied by only about 1˚F
(Figure 1). Species’ ranges contain information because
of the conditions that prevailed during the Holocene,
and while the details remain unclear, Holocene condi-

tions allowed many taxa to establish range equilibria.
Stable species’ ranges do not imply stable local popula-
tions; instead, ranges are a statistical estimate and always
include absences at some sites, as a result of local popula-
tion and metapopulation dynamics, even though these
sites might be suitable for the species. Such sites may also
include refugia, even though these may not be suitable for
long-term occupancy. 

Later in the Holocene, evidence from measurements of
atmospheric carbon dioxide and its isotopes support the
idea that, despite emerging human activity (Stocker et al.
2011), the global land biosphere and its large-scale carbon
balance have been relatively stable; although again, there
were continuous, fine-grained variations (Elsig et al. 2009).
The late Holocene left a legacy of biological information
in the form of species–climate correlations. Ecologists have
found links between the distribution of species and their
traits, often supported mechanistically by experimental
studies (Mooney 1977; Kearney and Porter 2009).
Evidence that climatic factors exert a strong physical con-
trol over species distributions can be seen at the microhab-
itat level, where subtle meter-scale topography influences
vegetation composition (Ackerly et al. 2002), from the
classic regional orographic mountain range scales of
Whittaker and Niering (1965) to the global level
(Emanuel et al. 1985). While the preponderance of evi-
dence links climate and plant species traits closely, there is
sufficient evidence of dynamic processes (Davis and Botkin
1985; Davis 1986; Cohen and Pastor 1991) to suggest that
stable species–climate relationships are being disrupted by
changing climates, leading to complex dynamics.

Such variability can be viewed hierarchically in the
paleorecord. At any given site, species’ composition over
time is typically very dynamic, reflecting local distur-
bance regimes, interspecific competition, and changes in
climate. When large datasets are assembled, more stable
species’ range patterns emerge, even though some sites
suitable for occupancy are vacant only randomly and
some unsuitable sites may still be occupied. As a result,
geographic range data provide different information from
single site-based field studies. Range data provide infor-
mation on climate dependence in the context of trophic
relationships; some apparent species–range correlations
may in fact be correlations with the climate sensitivities
of prey or forage species (Tingley et al. 2009).

Conditions in the mid- to late Holocene (Figure 1)
allowed many species to develop spatial distributions
reflective of their underlying realized niches (Holt 2009),
and those distributions are an important resource for mod-
eling. Given sufficient time, fine-grained patterns of vari-
ation do not prevent large-scale correlations with coarser-
grained climate patterns from emerging. The correlations
may not be the same in novel future climates. Under cli-
mate conditions with no modern analog, some important
North American species had different environmental
ranges relative to climate than those same species do
today, while other species appear more stable (Veloz et al.

Figure 1. Rates of biotic change in the Holocene and Anthro-
pocene (adapted from Williams et al. 2004). Rates of ecosystem
compositional change over 21 000 years in two North American
ecosystems: (a) cool mixed forests and (b) temperate deciduous
forests. After the deglaciation of North America, relatively rapid
changes are seen during the early Holocene. This was followed by a
period of relative stability during the mid- (12 000–6000 years
before present [BP]) and later Holocene (6000–3000 BP). Rates of
change then accelerate in the Anthropocene. The Anthropocene
changes seen here primarily reflect the impacts of land use following
the European settlement of North America, but may include some
early effects of climate change.
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2012). This suggests that current-day realized niches may
provide limited information regarding the future. The
generality of this problem is unknown. By contrast,
another recent study (Petitpierre et al. 2012) demon-
strated that most invasive plant species expand into a cli-
matic niche similar to the one they inhabited in their
home range, suggesting that present-day climate relation-
ships are stable; this conclusion was also reached by
Tingley et al. (2009) with regard to birds. The proportion
of species for which present-day ranges are, or are not,
robust predictors of future behavior remains unresolved. 

The global climate is changing but rates of change vary
widely between regions (Solomon et al. 2007).
Interpolated average annual air temperatures for the con-
terminous US from 1951 to 2006, and the changes
observed over the same period, are depicted in Figure 2a
and b, respectively. In parts of the US, mean temperatures
have changed by between 1–2.5 ˚F over this period, more
than enough to disrupt the calibration of temperature–
species range analyses; precipitation rates have also
changed. Case studies show some species apparently
responding directly to temperature (Erb et al. 2011), while
others are responding because their forage, prey, or preda-
tors are doing so (Tingley et al. 2009). Other observational
evidence that bioclimate is changing abounds; a graphic
example is evident in the shifts in the Plant Hardiness
Zones, the regions suitable for different horticultural and
crop plants as defined by the US Department of
Agriculture (www.arborday.org/media/mapchanges.cfm).

Loarie et al. (2009) calculated the velocity of climate
change, defined as the rate of movement required for a
species to maintain the center of its range at the same
temperature as now, based on climate model projections
of rates of change. This calculation suggests a global
mean of 0.5 kilometers per year (km yr–1), with many
areas as high as 1–10 km yr–1. This high rate of movement
implies that, especially in fragmented or managed land-
scapes, many species will have difficulty in keeping pace

(Figure 3). Species’ ranges have already begun to change
(Root and Weckstein 1994; Parmesan 2006; Wake et al.
2009) and data on species distributions collected in the
future will be less likely to be reflective of adjustment to
climate and more likely to exhibit transient responses

Figure 3. Conceptual model of transient niche responses to climate
change (inspired by LaDeau et al. 2011), illustrating a hypothetical
species with a range that ends at the 0˚ minimum temperature
isotherm. The axes are latitude and longitude, with a conceptual
temperature range mapped into that space. Initially, in the
Holocene, the species is near equilibrium with temperature across its
range. A climate envelope estimated here would allow the
temperature dimension of the species’ niche to be inferred. The
Anthropocene contour shows the species’ distribution at a sample
point in time, before it reaches equilibrium with new temperatures.
As temperatures change, the species’ range will lag behind its climate
constraints and at any given moment in time will still be moving
toward steady state. At any point within or along the species’
temperature limit, non-climatic factors (eg disturbance, competitive
interactions between species) can cause population changes, so the
species need not occupy the entire range at any specific time.

Figure 2. Rates and spatial variability of temperature change across the US. Although patterns of mean climate are complex, spatial
variation in rates of change adds even more complexity. (a) Average temperatures for the US and (b) rates of temperature change,
both for the period 1951–2006. The data are based on assembled station data, interpolated by means of a terrain-sensitive algorithm.
Data are derived from Climate Wizard (www.climatewizard.org), developed by the University of Washington, the University of
Southern Mississippi, and The Nature Conservancy.
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(Wikle 2003). Species’ responses to climate change can
be more or less linear, as has been seen in some migratory
species (Root and Weckstein 1994), but other transient,
non-linear responses to climate increase initially but then
decline over the long term (Schimel et al. 1990).

Techniques exist that can be used for ecological forecast-
ing in complex systems (Scheffer et al. 2001). In some situa-
tions the actual future trajectory of a system may be pre-
dicted, while in others only the likelihood of a dramatic
change may be quantifiable (Scheffer et al. 2009). In terres-
trial ecosystems, one of the best understood examples of
complex variability occurs in the dynamic tension between
grass and woody vegetation in savanna ecosystems.
Changes to climate, fire, and grazing regimes can drive
shifts from a grassy state with sparse trees to woodlands with
minimal grass cover (Scholes and Archer 1997; Scheffer et
al. 2001). The savanna is one of the simpler multi-state sys-
tems and contains relatively few interacting species, yet can
produce very complex dynamics.

While abstract and idealized simulations of ecosystems
can be carried out with very simple models, quantitative
forecasting requires not only an appropriate model but
also detailed observations of the current state of the sys-
tem (Hibbard et al. 2001, 2003). The paleorecord suggests
that many ecosystems that have no analog in either pre-
sent-day or paleocommunities will emerge as a result of
climate change, non-native species invasions, and land-
use change impacts. Community re-assembly will occur at
the species level, thereby reducing the utility of simpler
modeling techniques. The likelihood of complex changes
occurring further highlights the need for comprehensive
range observations at the species and trait level as early as
possible in the Anthropocene. 

n The range “scale gap” and the potential for new
remote-sensing tools

The length of time needed to collect comprehensive
ground-based measurements of species’ distributions is
such that critical information about species ranges and
niches could be lost; Jetz et al. (2011) described a gap in
resolution or scale, the “scale gap”, between species’ data
and other environmental datasets: “Global knowledge
about the spatial distribution of species is orders of magni-
tude coarser in resolution than other geographically
structured environmental datasets, such as topography or
land cover”. Land cover, topography, and climate are all
now observed from space through the use of remote-sens-
ing techniques that provide global coverage. There is a
substantial gap between the fine scales of these abiotic
data and the coarse resolution of most species’ distribu-
tion datasets. Global coverage allows analyses and models
based on complete coverage, rather than on sparse statis-
tical samples (Buermann et al. 2008). 

Remote-sensing observations are uniquely valuable
because they can provide complete spatial sampling even
when the measurements reveal only part of a complex

reality, as is the case with land-cover data. Recent tech-
nological advances are poised to move terrestrial remote
sensing beyond the monitoring of land-cover change to
mapping of functional diversity and habitat. Such
regional and global remote-sensing data on vegetation
diversity have the potential to bridge Jetz et al.’s (2009)
scale gap between species distribution and other environ-
mental data.

A global baseline dataset obtained while biogeographic
distributions are in the early stages of change will provide
correlations between species’ distributions and climate
and between species’ traits and climate. This baseline will
provide a data-based constraint on the sensitivity of many
plant species to climate. The baseline will also provide a
global-scale measurement of the initial state of the terres-
trial biotic system, in terms of the distribution of different
species, traits, or functional types that can serve as a start-
ing point for simulations of vegetation change. 

While current multispectral remote-sensing techniques
can detect variations in biological information only at
gross scales (typically classifying into tens of land-cover
classes rather than identifying many hundreds of thousands
of species), new techniques provide spectral information
content (Figure 4) and signal-to-noise ratios (SNRs) at
much higher resolutions. Spectral resolution controls how
many distinct plant constituents can be detected (Figures 4
and 5). The SNR defines how great a physical difference
can be detected in any spectral region. For typical vegeta-
tion, current and near-term sensors (eg MODIS, LAND-
SAT, LDCM) have SNRs of 60–300, while modern spec-
trometers have SNRs of > 600, thereby increasing their
ability to resolve biological variation beyond the addi-
tional degrees of freedom evident in Figure 4.

Several opportunities exist for remote-sensing technol-
ogy to provide a dramatic increase in the amount of infor-
mation about vegetation characteristics per unit area,
using airborne and spaceborne systems. These two
approaches are complementary. Airborne data coverage
gained from systems such as the National Aeronautics
and Space Administration’s (NASA’s) AVIRIS series as
well as Carnegie and National Science Foundation
(NSF)-supported systems is limited in terms of both time
and space (Asner and Martin 2009; Kampe et al. 2010)
but is at the scale of individual trees (~1 m2), while space-
borne data (at 30–70 m2) can provide global and seasonal
coverage, albeit at coarser resolutions. With regard to
spaceborne measurements, NASA’s proposed HyspIRI
(Hyperspectral and InfraRed Imager; www.hyspiri.jpl.
nasa.gov/) satellite mission, scheduled for the 2020s,
would provide a global dataset of vegetation functional
diversity. Successful studies of diversity have already been
carried out using sensors with a wide range of spatial reso-
lutions, but there is still a critical need for research on the
effects of resolution in retrieving species’ identity and
diversity to guide future trade-offs between spaceborne sen-
sor coverage, frequency of data collection, and resolution.

Quantitative remote-sensing techniques produce data
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on the distributions of species and their traits (Table 1) by
directly measuring the chemical composition of plant
canopies (Figure 5; Asner and Martin 2009) and by quan-
tifying plant traits linked to water, light, and nutrient use
(Ustin and Gamon 2010; Ollinger 2011). Multiple stud-
ies have successfully used this approach, which takes
advantage of airborne and (the limited existing) space-
borne data. Table 1 lists recent studies that have retrieved
diversity-related information through a wide range of air-
borne and spaceborne sensors. These studies show that
hyperspectral data can aid in plant species identification
and diversity estimations in temperate and tropical
forests, grasslands, and shrublands, as well as a range of
wetland ecosystems (Luoto et al. 2010). Some of these
studies were able to clearly identify individual plants to
the species level, while others were able to classify vege-
tation into multiple functional types, based on canopy
signatures, in a way that could be more or less directly
used in models of ecosystem function.

Imaging spectroscopy is reaching performance levels
that allow quantification of canopy chemistry at large
spatial scales. Many of the leaf traits that control photo-
synthesis rates can be measured by spectroscopic remote
sensing, including stoichiometric ratios (Kokaly et al.
2009), leaf mass per unit area (Asner et al. 2011), and
photosynthetic pigments (Ustin et al. 2009). In addition
to mapping process controls, preliminary studies show
that photosynthesis rates, and consequently key traits
such as resource-use efficiencies, may be directly esti-
mated spectroscopically by measuring chlorophyll fluo-
rescence (Frankenberg et al. 2011). Spectroscopic mea-
surements can also estimate key controls on
decomposition and subsequent soil nutrient cycling, such
as nitrogen, lignin, and cellulose content (Kokaly et al.
2009). By affecting decomposition rates, species’ changes
can influence productivity and plant successional dynam-
ics (Hobbie et al. 1993). While taxonomic and evolution-
ary relationships may be deduced from spectral data
(Asner and Martin 2011), the actual measurements often
focus on traits related to growth, longevity, and defense,
and can be directly used in mechanistic models. As Davis
et al. (2005) demonstrated, these traits and their diversity
within populations are important drivers of plant com-
munity responses to climate change.

Complementary measurements of vegetation structure,
and by extension, key habitat variables, may be measured
through light detection and ranging (LiDAR) techniques
and also possibly by active microwave techniques (Hyde
et al. 2005). LiDAR works by detecting the time delay of
laser light pulses; by measuring multiple returns, which
correspond to leaves and wood at different heights in the
canopy, the vertical distribution of foliage may also be
inferred. The architectural information obtained from
LiDAR can be used in process studies to aid in identifying
plant traits and in mapping their distributions (Dalponte
et al. 2008). Active LiDAR and new microwave tech-
niques are proving to be accurate and informative and

can provide data that are highly complementary to
canopy chemistry information. LiDAR can also quantify
the structure of canopy layers, weighting of leaves
between the top and bottom of canopies, and the pres-
ence of understory plants. 

Here, we have focused on the potential for remote-
sensing measurements to inform our understanding of
plant distributions in relation to climate, but trends in
the distribution and abundance of higher trophic levels –
herbivores, carnivores, and pests and pathogens – are also
critical. While these taxa cannot be observed from space,
detailed global coverage of habitat data from remote sen-
sors will provide information critical to modeling the dis-
tributions and dynamics of higher trophic levels (Vierling
et al. 2010). Chemical and structural measurements can
provide information on food resources and quality for
herbivores and heterotrophs, and three-dimensional veg-
etation structure provides habitat information for many
taxa. Today’s relatively crude biological remote-sensing

Figure 4. The information content of spectral data, showing the
impact of spectral resolution on the information content of
remote-sensing data, by computing the principal components of
the image. The number of independent components is less than
the number of spectral channels because the underlying spectral
features are often broader than a single channel. Also, many
plant constituents have spectral features in multiple parts of the
spectrum, reducing the amount of independent information. We
used a 420-band hyperspectral image (380–2510-nm range;
5-nm increments) of closed-canopy forest taken by the Carnegie
Airborne Observatory. These data were degraded to simulate the
spectral resolution of other sensors while holding the spatial
resolution (2 m) and signal-to-noise ratio constant. The
simulated sensors included NASA’s AVIRIS classic (210 bands;
400–2500-nm; 10-nm increments), the commercially available
instrument, CASI (72 bands; 400–1050-nm; 10-nm incre-
ments), and Landsat ETM+ (6 bands; 400–2200-nm; 20-nm
increments). The dimensionality of information in any given
scene will vary with diversity, plant chemistry, and canopy
structure, but follows this relative scaling of information content.
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data have been used successfully in modeling animal and
microbial distribution and activity, but the qualitatively
more advanced sensors that will soon be available will
greatly enhance this type of modeling (Hyde et al. 2005;
Goetz et al. 2007; Gilbert et al. 2012).

If present-day realized niches are not stable, or if they
only represent one of a family of possible niches accessi-
ble to a species, then current distributional information
may limit our ability to make forecasts (Veloz et al. 2012).

Novel species’ interactions and the effects of within-
species variability in traits may limit the predictability of
niche-based processes (Beckage et al. 2011). The ampli-
tude of trait variability within species may influence their
future distributional and evolutionary responses to cli-
mate change (Davis et al. 2005). 

Spectroscopy and allied techniques can map traits from
which species’ identity may be inferred, thereby assisting in
direct taxonomic identification. Spectroscopy can, in prin-

www.frontiersinecology.org © The Ecological Society of America

Figure 5. Airborne remote-sensing images of ecosystems with high and low plant diversity, obtained by retrieving combinations of
growth, longevity, and defense compounds, including nitrogen, ligno-cellulose and polyphenols. (a) High diversity canopy in the lowland
Peruvian Amazon; (b) a monospecific eucalyptus plantation on the Island of Hawaii. High species and chemical diversity is expressed as
a kaleidoscope of colors in Peru, while low diversity is shown as near constant color in the Hawaiian plantation ecosystem. These detailed
maps of functional diversity were obtained by airborne imaging spectroscopy from the Carnegie Airborne Observatory.

Table 1. Examples of identifying species or functional diversity through the use of imaging spectroscopy

Ecosystem type Sensor Spatial resolution (m) Source

Subtropical broadleaf forest (S) CAO 0.5 Féret and Asner (2011)
Subtropical broadleaf forest (F) AVIRIS 3.0 Carlson et al. (2007)
Temperate broadleaf forest (F) EO-1 Hyperion 30.0 Goodenough et al. (2003)
Temperate grasslands (S) AVIRIS 19.0 Carter et al. (2005)
Temperate mixed forest (S) AVIRIS 20.0 Martin et al. (1998)
Temperate needleleaf forest (S) DAIS 1.0 Gong et al. (1997)
Temperate shrubland-grassland (F) DAIS 1.0 Yu et al. (2006)
Temperate wetlands (F) CASI, other 1.0–3.0 Belluco et al. (2006)
Temperate wetlands (S) HyMap 3.0 Lucas and Carter (2008)
Tropical broadleaf forest (S) HYDICE 1.6 Clark et al. (2005)
Tropical broadleaf forest (F) EO-1 Hyperion 30.0 Papes5 et al. (2010)
Tropical lowland-to-montane rainforest (S, I) AVIRIS 3.0 Asner et al. (2008)
Tropical mangroves (S) CASI 2.5 Held et al. (2003)

Notes: S = studies that classified to taxonomic species; F = studies that primarily identified functional types; I = identification of invasive species. CAO = Carnegie Airborne
Observatory;  AVIRIS = Airborne Visible and Infrared Imaging Spectrometer; EO-1 Hyperion = Earth Observing-1 (spaceborne); DAIS = Digital Airborne Imaging System; CASI
= Compact Airborne Spectrographic Imager; HyMap = Hyperspectral Mapper (airborne); HYDICE = Hyperspectral Digital Imagery Collection Experiment (airborne). See
WebReferences for the citations in this table.

(a)                                                                                         (b)
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ciple, provide insights in addition to those derived from
maps of species’ distributions by quantifying spatial vari-
ability in key traits within taxa. This is not possible with
methods that map taxonomic identity, unless these are sup-
plemented by labor-intensive genomic or physiological
measurements. Remote sensing also intrinsically maps bio-
logical variation in the context of land use and land-use
change, and so allows scientists to integrate human
impacts on landscape structure with other drivers of biotic
change. Only the most intensive ground-based species-
range mapping can provide both the detail necessary to
integrate land-cover information and the global coverage
required to assess climate effects (Jetz et al. 2011).

If climate and other environmental changes lead to
complex evolving niches (Beckage et al. 2011), sustained
imaging of dynamic species’ ranges over time will be cru-
cial. The level of effort required to track changing
species’ ranges or trait variability within species by tradi-
tional field methods is such that only relative few taxa
could ever be covered. Satellite observations can be sus-
tained over decades, as has been shown by the LAND-
SAT, AVHRR, and MODIS time series, and are therefore
an appropriate means of observing dynamic changes in
geographic patterns. NASA’s current plan for the launch
of HyspIRI, based on the National Research Council’s
Decadal Study (Schimel et al. 2006), is not scheduled for
another decade or more; given current rates of climate
change, much of the data inherent in species’ ranges will
by then already have been lost.

n Conclusions

Forecasting the future of ecosystems will increasingly
require species- and trait-level data. Today, data with the
spatial and temporal coverage and resolution needed to
define species’ ranges and niches in detail do not exist
(Jetz et al. 2011). High-resolution data are needed, as are
models that will help us to understand and forecast the
dynamics of newly assembling communities and ecosys-
tems. The biogeographic patterns that provide informa-
tion on niche dimensions needed to construct this theory
and associated models are being disrupted and the infor-
mation inherent in these patterns is being lost – at a time
when forecasting will become an ever-more-critical tool,
and also increasingly challenging, as complex and non-
linear ecological responses to climate accelerate.

As a result of human development, the world is now
committed to an era of rapid biological change. With
accelerating rates of environmental change, species’
ranges are shifting. The information content of distribu-
tional data obtained now is greater than it would be if
obtained in the future, lending urgency to the need for
investment in new remote-sensing technology and plat-
forms now. At the same time, continuous observations of
these changes from space will provide critical constraints
on models of movement and range dynamics.
Hyperspectral and active laser and microwave technolo-

gies for remote sensing can map chemical and canopy
structural traits for plants and, by extension, provide
information on food resources and habitat structure for
other taxa. 

Typically, life-form classifications are used to assign
plant physiological and structural properties in models.
Mapping species and life forms from canopy traits reverses
this, and identifies taxonomic entities from their physio-
logical and structural characteristics, thereby creating the
possibility of inferring species, trait, and habitat distribu-
tions globally. When traits are assigned based on mapped
species of functional types, only very limited information
exists about variation within taxonomic entities.
Mapping traits directly, and inferring identify from those
traits, allows for a much fuller estimation of within-taxon
or type variability, which may be critical information for
predictive ecological models. Space-based observations
will qualitatively increase the amount and resolution of
data relevant to both species and trait distributions that
we can obtain, and will transform the science in the same
way that global observations have affected climate, topo-
graphic, and land-cover science. 

A consistently collected global dataset will provide a
wealth of information that can be mined for niche infor-
mation over the coming decades, and will provide infor-
mation on both current conditions as well as observations
of change. Such baseline data can only be obtained by
combining traditional field approaches with innovative
new remote observation techniques, and the develop-
ment of techniques for combining such information
across scales. Ecologists have not typically attempted to
use technology to increase the pace of species-level data
collection; however, it is now imperative that we obtain
global synoptic coverage of the abundance and spatial
distribution of biological diversity. The NSF has sup-
ported the construction of three airborne remote-sensing
systems as part of the National Ecological Observatory
Network (NEON; Kampe et al. 2011); the Carnegie
Institution for Science operates a similar system, and
NASA supports two further systems. Spectroscopic data
will soon be commonly available, and from a more
diverse range of ecosystems, than ever before. However,
the most important opportunity for collecting vegetation
data arises from the planned NASA HyspIRI satellite
mission, which would provide global spectroscopic data
over a period of years. The timing of this mission is
extremely important and, unlike missions connected with
many other areas of the Earth sciences, the information
content depends on when the measurements are made.
The longer it takes for the global mission to be deployed,
the less information will still exist about realized niches.
The timing of launch of all missions affects the pace of
scientific discovery, but in the case of HyspIRI, timing
actually affects the science that may be done. To obtain
the greatest value from planned satellite missions such as
HyspIRI, substantial research is still required. Extracting
the information about biodiversity inherent in new spec-
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troscopy techniques requires the development of algo-
rithms to extract diversity-related data as well as appro-
priate ground truthing for calibration and validation. Not
only are species being lost to extinction, but the informa-
tion about species is being lost as a result of the high rates
of environmental change. The sooner that global obser-
vational data can be collected, the more scientific value
they will provide.
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