Publications

2003
Moorcroft PR. Recent advances in ecosystem-atmosphere interactions: an ecological perspective. Proc Biol Sci. 2003;270 :1215-27.Abstract

The atmosphere and terrestrial ecosystems are fundamentally coupled on a variety of time-scales. On short time-scales, this bi-directional interaction is dominated by the rapid exchange of CO(2), water and energy between the atmosphere and the land surface; on long time-scales, the interaction involves changes in ecosystem structure and composition in response to changes in climate that feed back through biophysical and biogeochemical mechanisms to influence climate over decades and centuries. After briefly describing some early pioneering work, I focus this review on recent advances in understanding long-term ecosystem-atmosphere interactions through a discussion of three case studies. I then examine how efforts to assess the stability and resilience of ecosystem-atmosphere interactions over these long time-scales using Dynamic Global Vegetation Models are hampered by the presence of important functional diversity and heterogeneity within plant communities. Recent work illustrates how this issue can be addressed through the use of Structured Ecosystem Models that more accurately scale between the short-term physiological responses of individual plants and the long-term, large-scale dynamics of heterogeneous, functionally diverse ecosystems.

moorcroft_proc_biol_sci_2003.pdf
2002
Hurtt GC, Pacala SW, Moorcroft PR, Caspersen J, Shevliakova E, Houghton RA, Moore, B. 3rd. Projecting the future of the U.S. carbon sink. Proc Natl Acad Sci USA. 2002;99 :1389-94.Abstract

Atmospheric and ground-based methods agree on the presence of a carbon sink in the coterminous United States (the United States minus Alaska and Hawaii), and the primary causes for the sink recently have been identified. Projecting the future behavior of the sink is necessary for projecting future net emissions. Here we use two models, the Ecosystem Demography model and a second simpler empirically based model (Miami Land Use History), to estimate the spatio-temporal patterns of ecosystem carbon stocks and fluxes resulting from land-use changes and fire suppression from 1700 to 2100. Our results are compared with other historical reconstructions of ecosystem carbon fluxes and to a detailed carbon budget for the 1980s. Our projections indicate that the ecosystem recovery processes that are primarily responsible for the contemporary U.S. carbon sink will slow over the next century, resulting in a significant reduction of the sink. The projected rate of decrease depends strongly on scenarios of future land use and the long-term effectiveness of fire suppression.

hurtt_etal_pnas_2002.pdf
2000
Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA. Contributions of land-use history to carbon accumulation in U.S. forests. Science. 2000;290 :1148-51.Abstract

Carbon accumulation in forests has been attributed to historical changes in land use and the enhancement of tree growth by CO2 fertilization, N deposition, and climate change. The relative contribution of land use and growth enhancement is estimated by using inventory data from five states spanning a latitudinal gradient in the eastern United States. Land use is the dominant factor governing the rate of carbon accumulation in these states, with growth enhancement contributing far less than previously reported. The estimated fraction of aboveground net ecosystem production due to growth enhancement is 2.0 +/- 4.4%, with the remainder due to land use.

casperson_etal_science_2000.pdf
1999
Moorcroft PR, Lewis MA, Crabtree RL. Home range analysis using a mechanistic home range model. Ecology. 1999;80 :1656-1665.Abstract

The traditional models used to characterize animal home ranges have no mechanistic basis underlying their descriptions of space use, and as a result, the analysis of animal home ranges has primarily been a descriptive endeavor. In this paper, we characterize coyote (Canis latrans) home range patterns using partial differential equations for expected space use that are formally derived from underlying descriptions of individual movement behavior. To our knowledge, this is the first time that mechanistic models have been used to characterize animal home ranges. The results provide empirical support for a model formulation of movement response to scent marks, and suggest that having relocation data for individuals in adjacent groups is necessary to capture the spatial arrangement of home range boundaries. We then show how the model fits can be used to obtain predictions for individual movement and scent marking behavior and to predict changes in home range patterns. More generally, ourfindings illustrate how mechanistic models permit the development of a predictive theory for the relationship between movement behavior and animal spatial distribution.

moorcroft_etal_ecology_1999.pdf
1996
Moorcroft PR, Albon SD, Pemberton JM, Stevenson IR, Clutton-Brock TH. Density-dependent selection in a fluctuating ungulate population. Proceedings of the Royal Society of London Series B Biological Sciences. 1996;263 :31-38. Publisher's VersionAbstract

Despite considerable theoretical interest no direct examples of density-dependent natural selection acting on simple polymorphic variation have been documented in a natural population. Here we show that the magnitude of selective differences in survival between phenotypes in two conspicuous polymorphisms of coat colour and horn type in Soay sheep Ovis aries living on St Kilda, Scotland are associated with marked changes in population density. Selection is strongest in years of high density but weak in years of low density. In addition to direct observations of density-dependent 'soft' selection in a natural population, the analysis revealed that the level of overcompensatory mortality (responsible for promoting population instability) was higher after accounting for genetic variation in the coat and horn morph traits. The results emphasize the importance of understanding the interaction between selection and population demography for both genetic and ecological studies of natural populations.

1993
Gulland FMD, Albon SD, Pemberton JM, Moorcroft PR, Clutton-Brock TH. Parasite-associated polymorphism in a cyclic ungulate population. Proceedings of the Royal Society of London Series B Biological Sciences. 1993;254 :7-13. Publisher's VersionAbstract

An unmanaged population of Soay sheep living on Hirta, St Kilda, Scotland is persistently unstable, fluctuating between about 600 and 1600 individuals. Population crashes occurring approximately every 3 years are primarily due to winter food shortage. In this paper we show that sheep experimentally relieved of their gastrointestinal nematodes (predominantly Teladorsagia spp.) survived a crash better than matched controls, showing that nematode parasites contribute to the probability that a sheep dies in a crash. We also show that over three successive crashes mortality was significantly different between individuals of the three different genotypes at the diallelic adenosine deaminase locus (Ada). FF animals were most likely to die, SS animals had an intermediate probability of dying, and FS animals were least likely to die. Finally, three independent lines of evidence suggest that nematode burdens differ between the three Ada genotypes. First, in August, heterozygous females are less likely to have nematode eggs in their faeces than homozygous females. Second, at lambing, the periparturient rise in faecal egg count was highest in homozygous FF individuals. Finally, during the Autumn mating season, heterozygous males has lower faecal egg counts than homozgyotes, although this relation was complicated by interactions with year and age of male. These results are consistent with the idea that Ada allele frequencies are maintained in the sheep population by parasite-associated selection.

Pages